Orbital Character of the Conduction Band of Delafossite PdCoO$_2$ Studied by Polarization-Dependent Soft X-Ray Absorption Spectroscopy

Han-Jin Noh1, Jinwon Jeong1, Jinhwan Jeong1, Hojin Sung1, Kyoung Ja Park1, Jae-Young Kim2, Hyeong-Do Kim2, Sung Baek Kim3, Kyoo Kim3, B. I. Min3

1전남대학교 물리학과, 2포항가속기연구소, 3포항공대 물리학과

We present the x-ray absorption spectra that show the Co valence state and the orbital character of the conduction band of delafossite PdCoO$_2$. The Co 2p x-ray absorption spectra of PdCoO$_2$ and PtCoO$_2$ show that the Co ions have the trivalent low-spin configuration. The polarization dependent O 1s absorption spectra reveal that the unoccupied density of states (DOS) near the Fermi level consists mainly of the Pd 4d 3z$_2$-r$_2$ states. The experimental O 2pz partial DOS (PDOS) is extracted from the polarization dependent O 1s spectra and is compared with the theoretical PDOS by the local density approximation, showing a good agreement. These observations provide a consistent picture on the origin of the good conductivity of the delafossite oxides.