Study of order–disorder transition in Pt–Ni bimetallic alloys

서옥균¹, 황재성¹, 오필건², 정희수¹, 김 찬¹, 김태균¹, 김윤희¹,
이수웅⁴, 김기호⁴, 정건영¹, 노도영¹,³,⁴

¹광주과학기술원 신소재공학과, ²조선대학교 신소재공학과,
³광주과학기술원 펨토나노학제전공, ⁴광주과학기술원 광 과학기술 학제학부

The Pt-Ni alloy is an electro-catalyst of interest in the low temperature direct methanol fuel cells(DMFCs). It has been already reported that the Pt-Ni alloy catalysts may even have enhanced activity compared to pure platinum catalyst, depending on how the surfaces are prepared. The order-disorder transition in bimetallic alloy such as β-CuZn, Cu3Au, and CuAu have been investigated greatly by x-ray diffraction. After annealing the bimetallic alloy, the crystal structure changes as observed in the order-disorder transition of Cu3Au which changes from the face centered cubic to a simple cubic structure. Pt-Ni bimetallic alloy has been already reported to have the face centered cubic structure. However, in nano-scale Pt-Ni bimetallic alloy crystals the crystal structures changes to a simple cubic structure.

In this experiment, we have studied the order-disorder transition in Pt-Ni bimetallic nanocrystals. Pt/Ni thin films were deposited on sapphire(0001) substrates by e-beam evaporator and then Pt-Ni alloy were formed by RTA at 500, 600, and 700℃ in a vacuum environment and Pt-Ni nano particles were formed by RTA at 1059℃ in a vacuum environment. We measured the structure of Pt-Ni bimetallic alloy films using synchrotron x-ray diffraction and SEM.