The morphology and Phptoelectrochemical properties of TiO₂ electrode with UV Treatment and Oxygen Injection

XingGuan Zhao¹, En Mei Jin¹, Kyung-Hee Park¹, Hal-Bon Gu¹,Bok-Kee Park²
¹Chonnam National University, ²Howon University

Abstract: In this paper, in these case of photoelectrode using, UV treatment after oxygen solar conversion efficiency is increased. According to oxygen injection UV treatment will remove residual organics and increase the TiO2 surface area but also UV treatment can affect the same chemical action of ozone treatment. More porous networks and larger porosities were obtained in the TiO2 films prepared UV treatment after oxygen injection.

Key Words: Dye Sensitized Solar Cell, Surface morphology, Oxygen injection, UV treatment

1. 서 론

염료감응형 태양전지(DSSC)는 친환경에너지 변환에 있어서 현재 TiO₂ 광전극의 표면양상 변화에 따른 효율 향상이 기대되는 연구가 활발히 진행되고 있다. TiO₂ 광전극의 표면 처리 방법은 TiO₂ 불순물의 개질, 클러스터 처리, 산처리 등의 방법이 연구되고 있으나 TiO₂ 광전극은 많은 유기물의 전극으로 인해 낮은 효율 향상을 기대하기 어렵다. 본 연구에서는 TiO₂ 광전극 표면의 불순물을 제거하기 위하여 UV처리를 하였으며 UV처리만 주입하고자 하는 산소함량에 따라 염료감응형 태양전지의 광 전극 표면양상과 전기화학적 특성에 미치는 영향에 대해서 조사하고자 하였다. 일정 환기를 하여 산소의 환류 변화를 주어 UV를 조사한 경우 산소는 원으로 바뀌면서 광 전극 표면의 형성에 영향을 미치고 염료감응형 태양전지의 효율의 변화를 가져다 줄 것으로 예상할 수 있다.

2. 결과 및 토의

UV처리 없 주입하고자 하는 산소함량 변화에 따른 TiO₂ 광전극 표면의 형성 변화를 알아보기 위해 FE-SEM과 AFM으로 관찰하였다. 산소의 함량은 15cc/sec로 고정한 후 산소 주입 시간을 5-30초로 구분하여 재료하고자 하였다. 또한 UV의 조 사시간은 모든 실험에서 10분으로 고정하여 조사하였다. FE-SEM의 결과에서 알 수 있는 듯이 산소 주입시간의 변화에 따라 표면의 입자간 기간이 커지는 것을 볼 수 있으며 이것은 표면에서의 베타와 기타 불순물의 제거로 인해 생성된 것으로 예측할 수 있다. 표면적의 변화를 조사하기 위해 BET 측정을 하였으며 산소주입 후 UV 처리하지 않은 경우에 비해 처리된 경우 0.71m/g에서 2.31m/g로 비교적 많이 증가하는 것을 알 수 있었다. 이것은 산소 주입 후 UV 조사로 인해 비교적 많이 증가하고 광 매개체 염료의 연속형성이 향상되며 에너지변환 효율의 증가를 기대할 수 있다.

FE-SEM 분석 결과에서 볼 수 있듯이 특히 UV처리 전 산소를 20초 주입한 실험물의 기공성 관찰이 현저히 증가한 것을 보아낼 수 있었으며 TiO₂ 보손특성이 향상 된 것을 알 수 있었지만, 20초 이상 주입한 실험료는 오히려 극히 감소하였다.

XPS 분석을 통해 광전극 표면에서의 티타니아의 산화상태를 조사한 경우 산소를 20초 주입한 실험체의 Ti4⁺가 Ti3⁺의 전 이가 증가한 것을 확인 할 수 있으며 이것은 불안정한 산화상태인 Ti3⁺의 생성이 증가되어 염료의 흡착특성이 향상됨으로 기대할 수 있었다.

전기화학적 변화를 관찰하기 위해 광전압-전류특성을 조사하였다. 산소주입 환경에 따른 변화에서 10에서 20초로 변화된 경우 전류의 증가가 이루어졌으며 20초 이상 주입 시 과정부 산소의 항성은 UV 조사 후 오염으로 산화되지 않고 오히려 산소의 형태로 표면에 전달하여 염료의 흡착특성 영향력을 이기 효율을 증가시키지 못한 것을 알 수 있었다. 산소의 함량이 20초 주입된 경우 광전류밀도는 13.2mA/cm², 에너지 변환 효율은 5.3%으로 최적의 항성임을 확인 할 수 있었다.

감사의 글
본 연구는 교육과학기술부와 한국산업기술리서단의 지역혁신적연구사업으로 수행된 연구결과임.

†교신저자 구 황봉, e-mail: hbg@chonnam.ac.kr, Tel:062-530-0740
주소: 광주광역시 북구구봉동 전남대학교 공학6호관 504호

- 240 -