리더기 개수 최소화 방법

요 약
UWB(Ultra Wide Band)는 기존의 스펙트럼에 비해 매우 넓은 대역에 걸쳐 낮은 전력으로 대용량의 정보를 전송가능하며 정확성면에서 탁월하며 신호 도달거리가 길다는 장점에서 실제 위치 측위기술로 가장 적합하다. 측위 기술 방법 중 각도를 측정하여 위치를 측정 하는 AoA방식과 도착 시간을 이용하여 위치를 측정하는 ToA방식, 그리고 두 리더간의 시간 차를 측정하여 리더 간의 거리가 일정한 경우여도 상공신호 교점을 이용하는 TDoA방식이 가장 대표적으로 사용되고 있다. 본 논문에서는 2개의 리더기에서 AOA방식을 통한 각각의 교점과 ToA의 두 원뿔파의 교점, TDOA방식의 한 쥐의 상공신호 교점을 이용하여 3개의 리더기의 2개씩의 리더기 사용으로 리더기의 개수를 최소화 하며 위치 추적의 정확도를 높일 수 있었다. UWB의 특성과 실제 위치 결정 측위 방법 소개와 더불어 Hybrid를 통하여 얻을 수 있는 효과를 설명한다.

1. 서 론
UWB시스템은 초음파역 특성으로 인해 큰 채널 용량을 제공하므로 매우 많은 전송 전략에도 불구하고 기존 시스템보다 뛰어난 방대한 데이터 처리량을 제공하여 스트리밍 서비스 등에 요구되는 높은 데이터 전송률을 지원하고 있다. 또한 기존의 무선 사전시스템은 디지털 환경과 사용하지 않고 기지역에서 흔히 이용되므로 송수신기의 구조가 간단해짐으로써 적은 비용으로 송수신기 제작이 가능하다는 큰 장점을 가진다.[1] UWB측위기술은 초고속 전송 실현, 극히 짧은 빈스를 이용한 송수신, Channal Capacity, 보안성에 향상, 초고속 컴퓨터 바이러스에 performance 우수, 기존 영역의 사전시스템과의 경쟁, 정밀한 위치정보 및 추적이 가능, 장애물 투과 특성 등 많은 장점을 가지고 있다. UWB 측위기술 방법 중 현재 사용하는 위치결정의 대표적인 방법으로는 각도를 측정하여 위치를 측정하는 AoA(Angel of Arrival)방식, 신호가 도착하는 시간을 이용하여 위치를 측정하는 ToA(Time of Arrival)방식, 그리고 두 개 이상의 리더기가 송수신하는 신호의 도착 시간의 차를 측정하여 일정한 거리를 이용하는 TDoA(Time Difference of Arrival)방식이 사용되고 있다. 각의 측위기술 방법은 각각의 장 단점을 존재

본 논문에서는 이러한 기술들을 이용하여 리더기 개수를 줄이며도 측위 위치의 정확성 또한 높이기 위한 방법을 제안한다. 이를 위하여 2장에서의 관련 연구를 통해 3장에서 심혈 및 그에 따른 효과를 설명한다. 복잡한 과정, 및 향후방향 제시 후 본 논문을 rnn한다.

2. 관련 연구
이 장에서는 현재 실험 위치 결정 측위 방법 중 가장 대표적인 방법인 AoA, ToA, TDoA방식의 원리 및 알고리즘을 설명하고 현재 방법 중 두 가지 방법을 동시에 사용하는 Hybrid 방식을 제안한다.

2.1 AoA(Angel of Arrival)
AoA(Angel of Arrival)는 각도를 측정하여 위치를 측정하는 대표적인 방법이다. 각 리더기에서 TDoA파로 보내기 신호의 방향각을 이용하여 각도를 측정하고 각 리더기에 해당 사이의 방향각의 교차점을 계산하여 태그의 위치를 측정하는 알고리즘이다. 태그의 위치를 측정하기 위해서는 최소 2개 이상의 리더기에서 2개 이상의 방향각들이
필요하며 이들은 교차시험으로써 위치 파악이 가능하다. 그러나 AoA는 일방적으로 태그와 리더기와의 거리가 긴
어 집속도 정확도가 감소한다는 단점이 가지고 있다. 또한 리더기 간의 통신파는 필요하다. [2] 그림 1과 식 (1)은
AoA위치 결정 방법을 설명하고 있다.

\[
\begin{align*}
\sin \alpha &= \frac{a}{b} = \frac{\sin \beta}{c} = \frac{\sin \gamma}{d} \\
T &= \left(\frac{d \cos \theta_1 \sin \theta_1}{\sin(180^\circ - (\theta_1 + \theta_2))}, \frac{d \sin \theta_1 \sin \theta_2}{\sin(180^\circ - (\theta_1 + \theta_2))} \right)
\end{align*}
\] (1)

\[R_1 = \sqrt{(x_1 - x)^2 + (y_1 - y)^2}
\]

\[R_2 = \sqrt{(x_2 - x)^2 + (y_2 - y)^2}
\]

\[R_3 = \sqrt{(x_3 - x)^2 + (y_3 - y)^2}
\] (2)

2.2 ToA(Time of Arrival)

ToA(Time of Arrival)는 3개 이상의 리더기로부터 신호가 도착하는 시간을 이용하여 위치를 추정하는 알고리즘
이다. 리더기에서 태그까지의 거리는 신호의 측정에
따라 적정한 수신을 끼어서 산출할 수 있으며, 리더기와
태그 사이의 거리를 반정으로 하는 원들의 교점이 태그
의 위치가 된다. [3]

\[R_1, R_2, R_3\]를 이용해 각 리더기로 식정리로 하는 원을 나
타낼 수 있다. 식 (2)의 \(R_1 = R_2 = R_3\)의 방정식을 설계
이 때 원들의 교차점이 \(Tag(x, y)\)의 좌표를 얻게 되고 그
좌표를 통해 태그의 위치를 알 수 있다. ToA방식을 유
용하기 위해서는 리더기와 태그 사이의 통신파가 중요한
문제이다.

2.3. TDoA(Time Difference of Arrival)

TDoA(Time Difference of Arrival)는 3개의 리더기를
이용하여 태그와 두 개 이상의 리더기가 송수신 하는 신
호의 도착 시간의 차이를 측정하여 센서 간의 거리차가
일정한 거리를 찾아내는 방법이다. 3개의 리더기에서 먼
여지는 두 개의 측폭선을 이용하여 그 교점을 찾아낸으
로써 태그의 2차원 위치를 찾을 수 있으며 4개 이상의
센서를 가질 경우 3차원 위치를 알 수 있다. [4] 그림 3
은 TDoA방법을 보여주고 있다. 태그의 위치 좌표는
\(Tag(x, y)\)이고 태그 1 \((x_1, y_1)\), 태그 2 \((x_2, y_2)\), 태그 3 \((x_3, y_3)\)은 각각의 리더기의 위치 좌표를 나타낸다. 리더
기 1을 기준으로 하여 \(R_1 = R_2, R_1 = R_3\)는 태그
의 신호 도착 시간의 차이를 나타내며 각 신호의 도착
시간 차이를 측폭선 형태로 도시될 수 있다. 식 (3)의
\(R_1, R_2, R_3\)의 방정식을 통해 측폭선의 교차점이 생기게
되고 그 교점이 태그의 위치 좌표가 된다. TDoA 방식은
측정이 높은 중 구조방법이 하루밤여도 정확한 위치를 추정
할 수 있어 넓리 사용 중에 있다. 이 방법을 사용하기
위해 리더기간의 통신파의 문제를 가지고 있다.

\[R_2 = \sqrt{(x - x_2)^2 + (y - y_2)^2} - \sqrt{(x - x_1)^2 + (y - y_1)^2}
\]

\[R_3 = \sqrt{(x - x_3)^2 + (y - y_3)^2} - \sqrt{(x - x_2)^2 + (y - y_2)^2}
\] (3)

그림 1. AoA 위치 결정 방법

그림 2. ToA 위치 결정 방법

그림 3. TDoA 위치 결정 방법

2010 한국컴퓨터종합학술대회 논문집 Vol.37, No.1(D)
2.4 hybrid를 이용한 위치 추정
지금까지 무선 위치 추정 기법의 대표적인 방법들을 살펴보았다. 이 대표적 방법 중 3개 이상의 리더기를 사용하여 위치를 구할 수 있는 ToA/TDoA법에 비해 AoA법은 2개 이상의 라디오를 필요로 한다. 하지만 그 정확도는 레이어의 머리가 없어질수록 떨어지는 단점은 가지고 있다. 이 단점을 해결하기 위해 AoA방식에 ToA/TDoA 방식을 혼합하여 사용하는 Hybrid방식을 이용하고자 한다. 우리는 이를 두 가지로 3개 이상의 리더기를 이용하여 위치 추정방법을 제시하고자 한다.

2.4.1 hybrid AoA/ToA
이 논문에서 제시하는 방법은 AoA방식과 ToA방식을 동시에 사용하는 것과 AoA방식과 TDoA방식을 동시에 사용하는 방법으로 살펴보고자 한다.
먼저 그림 4와 식(4)를 통해 AoA/ToA방법을 살펴보자. 2개의 리더기에서 AoA방식을 이용하여 생기는 두 각의 교점을 ToA방식을 이용한 두 원의 교점을 이용하여 태그의 위치를 파악하는 방법이다. 그림 4는 두 방법을 동시에 사용하여 태그의 위치 추정 결과를 보여주고 있다.

그림 4. AoA / ToA 위치 결정 방법

2.4.2 hybrid AoA/TDoA
그림 5와 식(5)를 통해 AoA/TDoA방법을 살펴보자. 두 개의 레이어에서 AoA방식을 이용하여 생기는 두 각의 교점을 TDoA방식을 이용한 한 상의 정확성을 곡선을 통해 태그의 위치를 파악하는 방법이다. 그림 5는 두 방식을 동시에 사용하여 태그의 위치 추정 결과를 보여주고 있다.

\[
\sin \alpha = \sin \beta = \sin \gamma
\]

\[
\frac{a}{b} = \frac{\sin \theta_1}{\sin \theta_2}
\]

\[
T\left(\frac{d \cos \theta_1 \sin \theta_2}{\sin(180^\circ - (\theta_1 + \theta_2))}, \frac{d \sin \theta_1 \sin \theta_2}{\sin(180^\circ - (\theta_1 + \theta_2))}\right)
\]

\[
R_1 = \sqrt{(x_1 - x)^2 + (y_1 - y)^2}
\]

\[
R_2 = \sqrt{(x_2 - x)^2 + (y_2 - y)^2}
\]

(5)

그림 5. AoA / TDoA 위치 결정 방법

3 실험 및 효과
3.1 실험
본 장에서는 임의의 태그 좌표를 라디어 3개를 사용하는 기법을 ToA 방법을 이용한 위치 추정과 리더기 2개의 환경에서의 두 가지의 hybrid방법을 이용한 위치 추정을 통하여 각 방식의 위치 추정 정확성을 실험한다. 실험 환경은 가로 10m, 세로 10m 공간에 태그와 리더기 간에는 무기화 되어 있으며 동일한 조건하에 실험한다. 그림 6은 30개의 좌표로 나타낸 임의의 태그 좌표를 보여주고 있다.

그림 6. Random points

그림 6에서 나타나 있는 임의의 태그 좌표 30개에 대하여 MATLAB을 통하여 각 위치 추정 실험을 하였다.
3.2. 효과

본 논문에서 제시하는 방법으로 얻을 수 있는 효과는 리저버개수를 최소화하여 얻을 수 있는 모든 이점의 합이다. 먼저 농축도 부터 전체의 모든 랜덤한 대나물에서의 것이 최선의 전기와 선의 전기로 판정할 수 있으며, 만약 하나의 랜덤이 아닌 여러 대의 단일 전기의 전기의 전기로 판정할 수 있다. 그 이유는 hybrid AOA/TDoA 방법을 사용할 경우, 시간에 오류가 발생할 시 위치 추정에 있어 큰 영향을 미치지 않지만, 이것은 AOA방법 자체에 문제가 있는 상태도 가능하다.

4. 결론/향후방향

UWB를 이용한 무선측위 시스템은 더욱 넓은 분야에 보다 많은 편리함을 제공하기 위한 연구가 계속 이루어지고 있다. 그 와 함께 적용에 대한 소프트웨어가 필요하다. 본 논문에서는 아이러너기 최소화하기 위한 Hybrid 방법을 제안하였으며, 실험을 통해 본 논문에서 제시한 Hybrid 방법을 통해 위치 측정이 가능하다는 것을 알 수 있다. 이를 통해 정확성을 높이면서도 레이저로부터의 경계적 이익을 얻을 수 있다. 또한 레이저로부터 이들이 상호를 없애며, 시간 오류에 대한 위치 측정 또한 가능하다. 실제 레이저의 개수와 볼 수록 더 정확한 좌표를 얻을 수 있는 것이 사실이다. 그러나 근저에는 정확한 위치 측정을 위해
많은 요차를 줄일 수 있는 방법에 관한 연구가 활발히 진행되고 있으며, 항후 이러한 방법들을 통하여 리더러의 개 수를 최소화하면서도 정확한 위치를 제공할 수 있는 방법 들에 대한 연구가 필요할 것으로 생각된다.

참고 문헌

[4] 김보미, 심민진, 이종은 "무비쿼터스 센서 네트워크 의 위치탐지 기술 및 응용" 주간기술동향 종합 129호 2007. 4. 11