건물의 인동거리 및 차마조건에 따른
화재확대 위험성 평가 실험
신이철 · 구인혁 · 林 吉彦 · 권영진
호서대학교 소방방재학과 · 일본건축연구소

An Experimental Study on the Fire Spread Risk Assessment
according to the Eaves Conditions and Building Arrangement
Shin, Yi Chul · Koo, In Hyuk · Hayashi Yoshihiko· Kwon, Young Jin
Hoseo Univ. · Building Research Institute, Japan

요 약

최근 도시화, 산업화 등으로 인하여 인구 및 도시시설이 밀집되어 자연적 재해 및 인위적 재난에 취약한 구조물이 증가하고 있으며, 오래된 시가지와 고지대주거지를 중심으로 재난에 무 방비한 장소들이 존재한다. 이는 급속한 도시화 과정에서 비롯된 것으로 도시기반시설이 정 비되지 않은 상황에서 무질서한 도시개발이 이루어져 결과라고 할 수 있다. 따라서 우리나라의 도시화에 발생 위험성을 평가하기 위한 도시화재의 물리적 연속성상 예측모델을 구축하기 위해 건물간격에 따른 유용성에 개구분화함의 성상에 대한 실험을 실시하였다.

1. 서론

최근 세계적으로 대형재진이 빈번히 발생하여 큰 인명 및 재산피해가 발생하고 있다. 이에 따라 우리나라도 이러한 재난으로부터의 도시의 안전을 확보하기 위해 방재도 시 및 방재마을 만들기 등에 대한 관심도가 높아지고 있다. 그러나 이러한 도시재난 중 지진에 의한 시가지 화재에 대한 연구는 전부로 실정이며, 노후화 된 시가지 및 화재경계 지구에 대한 방재대책이 구축되어 있지 않아 시가지 화재의 발생 가능성이 상존하고 있다. 또한 표 1은 연소확대범위 범의 피해규모를 나타낸 것으로 인근 건물로의 연소확대가 되었을 경우 단일건물 화재에 비해 발생전후는 덜으나 피해규모가 커 시가지 화재의 위험 성이 높은 것을 알 수 있다.

시가지 화재가 확대되는 원인은 화재발생 건물로부터의 개구분출화염과 지붕분리 후의 노출된 화염이 바람에 의해 인접 건물로 급속히 연소가 전달되는 것으로 알려져 있다.

따라서 본연구는 유동에서의 개구분출화염을 대상으로 실험규모의 구획화재실험을 실시하여, 시가지에 있어서의 방재대책에 기초적 자료를 제공하고자 한다.
표 1. 연소확대범위별의 피해규모(2008 소방방재청)

<table>
<thead>
<tr>
<th>연소확대규모</th>
<th>화재(건)</th>
<th>사망(인)</th>
<th>부상(인)</th>
<th>재산피해</th>
</tr>
</thead>
<tbody>
<tr>
<td>발화지점단 연소</td>
<td>12,252</td>
<td>14</td>
<td>428</td>
<td>24,952,370</td>
</tr>
<tr>
<td>발화층단 연소</td>
<td>2,669</td>
<td>43</td>
<td>255</td>
<td>53,826,983</td>
</tr>
<tr>
<td>다수층 연소</td>
<td>203</td>
<td>3</td>
<td>68</td>
<td>8,422,825</td>
</tr>
<tr>
<td>발화건물의 전체연소</td>
<td>1,402</td>
<td>58</td>
<td>91</td>
<td>56,310,791</td>
</tr>
<tr>
<td>인근건물로의 연소</td>
<td>828</td>
<td>25</td>
<td>108</td>
<td>120,884,188</td>
</tr>
</tbody>
</table>

2. 실험 계획 및 방법
2.1 폭등시설 개요
본 연구에서는 일본건축연구소의 폭등시설을 사용하였으며, 전체길이 62400mm, 최대폭 30000mm, 최고높이 16600mm의 대규모 폭등시설이다. 시설은 승용차부, 정류장, 측정부로 구성되어 있으며 승용차에서 발생한 바람은 정류장에서 의해 안정된 바람으로 변화하여 측정부로 유입시키며 실험을 실시하게 된다. 승용차는 수동가변식 투료용송기로 측정경은 36900mm, 최대량은 200m³/s, 최대용량은 11m/s이다. 일반의 폭등 시설은 측정부로 불리는 측정부가 폭등 방향으로 일정하지만, 본 시설은 폭등 실험을 대상으로 하고 있기 때문에 측정부가 입력 수직 방향으로 크게 개방되고 있다. 승용차가 가까운 측정부를 제1측정, 수직 방향으로 개방되고 있는 측정부를 제2측정으로 한다. 측정부 단변은, 제1측정에서 폭 5000mm, 늘이 4000mm, 제2 측정에서 폭 5000mm, 높이 14000mm이다.

그림 1. 폭등시설도면

2.2 실험 개요
본 실험은 실무로구현한 화재 폭등 시설에 설치하여 실시하였다. 우리나라에는 아직, 화재 건물에 대하여 인명가속이 근절한 상황 하에서의 인적력의 영향을 고려한 물리적 테스트가 부족하다. 따라서, 실험 목표의 구체화 실험을 실시하여, 개구부를 화재가 미치는 인적력에 의한 영향에 대해 정량적으로 분석 하는 것을 목적으로 하였다.

그림 3.4에 실험장치의 개요를 나타내었다. 구획 모형은 안 치수 3000mm의 래부형으로, 두께 100mm의 ALC 보드로 조립하였다. 편재 편 통로(B1200 mm×H 100 mm)로 해, 바람이 불어 가는 측 측벽면의 중심에 설치하였다. 또, 인적력도 장 재료와 사용해 치수 3000mm×3000mm로 하였다.

본 실험의 조건으로 인적력을 설치하여, 동 통로(V=3.7 m/s)에서의 인적력의 이격거리와 저마의 유무를 변화시켰다. 표 2에 실험조건을 나타내었으며, 그림에 각 측정점을 나타내었다. 제측점의 좌표는 인적력면 상에 있어 구획 하단의 중심을 원점으로 하여, 개구
먼에 대해 수평 방향을 X축, 높이 방향을 Y축, 수직 방향을 Z축으로 하였다. 본 실험은

임기류의 온도를 측정하기 위해, K-type 열전대(φ=3.2 mm)를 설치하여, 인절백민 상

마 및 백인면의 온도를 측정하였다. 측정은 Y=1000~2800mm(200mm 간격)로 하여, X=0에서

는 Z=0, 100, 400, 900mm에 40개, X=600, 1200mm에서는 Z=100, 400, 900mm 에 30개,

X=-600, -1200mm에서는 Z=0에 10개를 설치하였다. 또, 인절백면상(Z=0)의 열류속을 측정

하기 위해 X=-100mm에서는 Y=2500, 2700, 2900mm, X=-1000mm에서는 Y=2700, 2900mm,

X=-1300mm에서는 Y=2800mm의 합계 6개의 열류속계를 설치하였다.

실험체의 인절백과의 간격은 건축시 시험템 전 80조의 2량 병표2를 참고하여 1500mm,

1000mm으로 구분하고 최고의 유무에 따라 실험을 두 차례씩 진행하였다. 실험 실험을 위하여

차원으로 사용된 목재 Crib는 국내 주거시설의 평균 화재발생을 참고하여 이와 유사한

화재발생을 갖도록 제작하였다(표3). 화재활동은 다음의 식을 사용하여 산출하였다.

\[
Q = \frac{\sum (G_i H_i)}{HA} \quad \text{[kg/m}^2\text{]} \tag{식 1}\]

표 2. 실험 개요

<table>
<thead>
<tr>
<th>구분</th>
<th>Crib(mm)</th>
<th>건물간격(mm)</th>
<th>공속</th>
<th>처마</th>
</tr>
</thead>
<tbody>
<tr>
<td>1차 실험</td>
<td>1800×1800</td>
<td>1500</td>
<td>3.7m/s</td>
<td>무</td>
</tr>
<tr>
<td>2차 실험</td>
<td></td>
<td>1500</td>
<td></td>
<td>우</td>
</tr>
<tr>
<td>3차 실험</td>
<td></td>
<td>1000</td>
<td></td>
<td>우</td>
</tr>
<tr>
<td>4차 실험</td>
<td></td>
<td>1000</td>
<td></td>
<td>무</td>
</tr>
</tbody>
</table>

표 3. 목재 Crib의 합수율 및 화재항호

<table>
<thead>
<tr>
<th>구분</th>
<th>Crib 무게(kg)</th>
<th>합수율(%)</th>
<th>화재항호(kg/m²)</th>
<th>비교</th>
</tr>
</thead>
</table>
| 1차 실험 | 145.6 | 14.75 | 16.17 | 12.29kg/m²에서 15.64kg/m² 사이에
| 2차 실험 | 142.4 | 11.88 | 15.84 | 본포하며 평균
| 3차 실험 | 141.4 | 12.19 | 15.71 | 화재항호는 13.96kg/m²
| 4차 실험 | 143.8 | 13.58 | 15.97 | |
3. 실험 결과 및 고찰

3.1 화염은도 측정결과

그림 5는 발화 후 시간에 따른 분출화염성상을 나타낸 것으로 발화 10분 후 개구분출화염
염이 발생하였으며, 15~20분 사이에 플레모이피가 발생해 화염이 급속히 성장하는 경향을
나타내었다.

그림 6과 표 4는 실험조건에 따른 온도변화를 나타낸 것으로 인접벽외의 거리가 가까다고
쳐마가 있는 경우 인접벽이 수열하는 온도가 높아지는 경향을 나타내었다. 따라서 인접벽
변화의 거리가 저자의 조건에 의한 인접벽 수열하는 온도의 차이가 크게 발생하여 시가
지 화재에 있어서의 2개 조건이 간고의 화재확대에 큰 영향을 미치는 것을 확인하였다.

3.2 열유속 측정결과

그림 7에 각 실험 조건에 따른 열유속치 $(X=-100, -700, -1300mm, Y=2900mm, Z=0)$을
나타내었다. 건물의 인접거리에 따른 열유속치는 차마가 없는 경우가 비해 차마가 있는
경우가 열유속 차이가 커지는 경향을 보였다. 또한 인접거리가 1500mm의 경우 차마의 유
무에 관계없이 유사한 열유속치를 나타내었으나, 1000mm에서는 큰 차이를 둘 수 있어 인
접거리에 의한 방사열량이 건물에 미치는 영향이 얼마나 큰지를 확인 할 수 있었다
(그림 8).

<table>
<thead>
<tr>
<th>표 4. 실험조건에 따른 온도변화</th>
</tr>
</thead>
<tbody>
<tr>
<td>차마</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1000mm</td>
</tr>
<tr>
<td>1500mm</td>
</tr>
<tr>
<td>차</td>
</tr>
</tbody>
</table>
4. 결론

유동화에서의 건물 간격 및 차마의 유무를 변수로 실시한 화재전파 성상 실험을 한 결과, 다음과 같은 연계영향에 관한 결론을 얻을 수 있었다.

1) 인접벽과의 거리가 가까우며 차마가 있는 경우 인접벽 온도가 높아지는 영향을 나타내었다. 따라서 인접벽과의 거리가 차마의 조건에 의해 인접벽이 수용하는 온도의 차이가 크게 발생하여 시각적 화재에 있어서의 2개 조건의 건물간의 화재확산에 큰 영향을 미치는 것을 확인하였다.
2) 인접거리가 1500mm의 경우 차마의 유무에 관계없이 비슷한 열유속을 보였으나, 1000mm에서는 큰 차이를 보여 인접거리에 따른 복사열량이 인접건물에 미치는 영향을 압 수 있다.

인접 건물의 벽면이 수용하는 열적 영향을 분산화염의 성질과 상태를 실제 실험에 의해 분명히 하여 건물간의 조건에 따른 도시화재의 위험도에 대하여 규명하였다. 하지만 분산화염의 길이와 화염의 개시작동의 새로운 모델화를 위해서는 실내실험의 데이터가 미흡하므로 추가적으로 다양한 조건을 적용한 모형실험이 필요할 것으로 사료된다.

감사의 글

본 연구는 2009년도 소방방재청 국제공동연구인『도시화재의 물리적 연소성상예측모델의 개발과 이를 이용한 화재리스크 평가기법의 개발』지원에 의하여 수행하였으며 관계자께 감사드립니다.

참고문헌
1. 日本建築研究所 (2006). “市街地の延焼危険性評価手法の開発” 建築研究報告。