1D4) 불철 황사 발생지에서의 먼지 발생의 공간 분포 특성
Spatial Distribution Characteristics of Occurrence of Asian Dust over the Source Regions in Spring Season
이 종재·김철희
부산대학교 지구환경시스템학부 대기과학전공

1. 서론
2001~2002년 우리나라 황사 발생일수는 평균적인 황사 관측 일수를 월연 초과하였고 그 강도 또한 매우 극심하였다. 그러나 이와는 극히 대조적으로 이듬해인 2003~2004년에는 우리나라 대도시에서 황사 발생 현저히 줄었다. 이러한 황사 발생의 급격한 연 변동성을 규명하고 황사 모델링의 예보 정확성을 높이기 위해서는 우선 중국의 황사 발생지에서의 원천적인 황사 발생 원인을 시·공간적으로 조사하고 그 경향을 파악하는 것이 우선 중요하다.
본 연구에서는 황사 발생지에서의 불철 먼지 발생의 공간 특성을 분석하였다. 발생지에서의 먼지 발생빈도, 종류 변화, 특성 분석 결과를 포함하였으며, 정규식생지수(NDVI) 자료를 이용하여 2000년 이후의 발생지에서의 먼지 발생의 특성 변화를 살펴보았다.

2. 자료 및 연구 방법
본 연구에서는 세계기상기구(World Meteorological Organization: WMO)에 보고되는 SYNOP 자료 중 황사 발생지에서 먼지 발생과 연관되는 일기 코드와 10 m 높이의 지표 품속 자료를 사용하였다. 분석 기간은 2001년부터 2007년 끝까지로, 황사가 발생한 지역을 구분한 Lim and Chun(2006)의 내용을 참고하여 3개의 소구역(S1~S4)으로 설정하였다. 즉 S1은 35°N~45°N, 100°E~110°E의 고비사막, S2는 40°N~45°N, 110°E~120°E의 대구고지역, S3은 40°N~50°N, 120°E~125°E의 중국 북동부 지역이다. 2000년 이후의 불철 중국 황사 발생지역 먼지 발생빈도 및 그 특성을 살펴보기 위하여 동 기간의 자료로부터 먼지 발생빈도를 계산하고 최근의 발생 변동성을 분석하였으며, 동 기간 기상 변수 중 강풍 발생빈도의 변동에 따른 먼지 발생 특성을 연관시켜 분석하였다. 또한 황사 발생지의 변동성을 확인하기 위하여 MODIS-Terra level 3 자료 중 NDVI(Normalized Difference Vegetation Index) 자료를 이용하여 식생의 변화를 먼지 발생 분포와 비교 분석하였다.

3. 결과 및 고찰
연도별 불철 먼지 발생 빈도수는 그림 1(a)에 제시하였다. 또한 동 기간의 불철 정규식생지수(NDVI) 평균값을 그림 1(b)에 제시하여 먼지 발생 빈도의 공간 분포 변화를 식생 분포 변화와 비교하였다. 우리나라에 황사 발생이 극심했던 2001~2002년에는 S1~S3 지역에서 모두 불철에 먼지 발생이 증가하였으며, 특히 지리적으로 우리나라와 가까운 S2, S3 지역에서 먼지 발생이 급증하는 특징을 보였다(e.g., Chun et al., 2001; Kuroskii and Mikami, 2005; Lim and Chun, 2006; 이종재와 김철희, 2008).

각 발생지별 평균 정규식생지수(NDVI)값은 S1, S2, S3 순으로 작았으며, 각각 0.14, 0.20, 0.27로 나타났다. S1, S2 지역에서는 2001년에 가장 작은 정규식생지수(NDVI)값을 보였으며, 식생의 분포와 먼지 발생 빈도는 높은 음의 관련성을 나타내었다. S3 지역은 다른 지역에 비해 정규식생지수(NDVI)값이 전체적
으로 높게 나타나고 먼저 발생 빈도도 가장 높았으나, 먼저 발생 빈도가 가장 높았던 해인 2002년에 정규식성지수 또한 가장 높은 값을 보였다. S3 지역의 경우 지속적으로 높은 정규식성지수를 나타내고 있어 먼저 발생 빈도수는 기상 변수, 특히 강한 풍속(7.5 m/s)의 발생 빈도에 의해 변화될 가능성이 다른 지역에 비해 큰 것으로 판단된다.

발원지별 먼저 발생 특성을 살펴본 결과 각 발원지별로 먼저 발생 빈도 분포는 주로 기상요소에 의해 결정되는 것으로 판단되며, 지형·환경 요인도 주요하게 작용하는 것으로 사료된다. 향후 한반도에 도달
하는 황사 현상에 대한 주제를 전단하고, 보다 정확한 황사의 예보 및 평가를 위해서는 발원지에서의 먼저 발생 특성에 관한 연구가 계속되어야 할 것이다.

Fig. 1. Spatial distributions of a) frequency of dust cut break and b) NDVI.

참고 문헌

- 169 - 2019년 한국대기환경학회 춘계학술대회 논문집