1. 서 론

국내에서 발생하는 인위적인 화학물질(예: VOC)은 2001년 966,786톤이었으며 배출원 중 용제가 728,547톤으로 가장 많았다(김조현, 2006). VOC 배출재가능은 화학물질의 분해와 회수의 방법으로 나눌 수 있다. 중개에는 분해법이 주 연구대상이었으나 최근에는 공해물질도 처리방법에 따라 자원으로 회수가 가능하기 때문에 회수에 대한 관심이 높아지고 있다.

인위적인 VOC 발생특징은 대중화, 저소득화로 자원으로 회수하기 위하여는 기술적, 경제적인 문제가 발생한다. 예를 들어 용제로 회수하는 방법인 용축에 의한 용제 회수시 VOC 농도가 낮아 노점이 낮기 때문에 용축하기 위하여는 용축기를 극단온상태에서 온전하게 하며 또한 물량이 크기 때문에 장치의 크기도 커져야 하는 문제점이 있었다. 본 연구에서는 VOC를 자원화 하기 위한 필요한 전단계인 연속농축방법에 대하여 고찰하였다.

2. 연속농축장치

모듈로 동적 연속농축장치 공정도는 그림 1과 같다.

![Fig. 1. Schematic diagram of continuous concentrator.](image-url)
농축기로부터 배출되는 탈착가스는 VOC 농도가 높으므로 화재 위험성을 피하기 위하여 절소를 사용하였고 전기회로에서 절소가스를 가열하여 인축농축기로 공급하였다.

3. 결과 및 고찰

흡착제로 H\(^+\)가 이온교환된 Si/Al\(_2\) 규가 높은 소수성 케어라이트는 Zeolyst Co로부터 구입하여, 550\(^\circ\)C에서 3시간 동안 소성한 후 사용하였다(김정량 등, 2006). 각각의 모질에는 10 g의 케어라이트를 넣어 사용하였다. 흡착질은 물루엔이 농도는 217 ppm, 윤량은 100[리터/분]이었다. 탈착가는 절소이며 유량은 6[리터/분]이고 온도는 220\(^\circ\)C이었다. 인속농축장치 운영온도를 9분 간격으로 이동하였으며 측정은 1, 4, 7분에 6 port valve를 사용하여 탈착가스와 흡착 후 배출되는 가스를 흡입하여 GC(HP 6890)로 분석하였다. 모질이 이동하여 제자리로 돌아오기 위하여는 14분의 모질이동이 필요하며 전의 상 이를 1배이동로 정하였다. 그림 2에 첫 번째 세이클에서 각 측정시간대별로 측정한 탈착가스 농도를 나타내였으며 그림 3에 두 번째 세이클에서의 탈착가스 농도를 나타내었다.

![Fig. 2. Toluene concentration in the desorption gas during cycle 1.](image1)

![Fig. 3. Toluene concentration in the desorption gas during cycle 2.](image2)

상기 그림에서 보는 바와 같이 탈착되는 물루엔 농도는 1분과 4분에 높았지만 7분에서 측정한 물루엔 농도는 급격히 감소하여 9분간 시간 영역에서 대부분의 흡착질이 탈착되었음을 알 수 있다. 흡착 후 배출되는 가스로부터 측정한 물루엔 농도는 3~7 ppm이었으며 약 97.7%의 물루엔이 제거되었 다.

참고 문헌
