해양플랜트 기자재의 화재저항 성능에 관한 시험방법 및 설비의 개요

전준표 · 김정식 · 최태진
한국조선해양기자재연구원 기계환경연구본부 안전환경팀

The fire resistance performance test methods and equipment overview on the marine plant

Jun-Pyo Jeon · Jung-Sik Kim · Tai-Jin Choi
Safety & Environment Team Mechanical & Environment Research Division, Korea Marine Equipment Research Institute

요 약

플랜트산업 기계, 전기 통신 기계등 여러 가지를 생산하는 공장을 의미하고 있다. 해양플랜트는 바다위에 설치된 시설이라고 볼 수 있으며 주로 원유 및 가스를 체취하여 시중에서 사용할 수 있도록 정유공정까지 거치는 대규모 설비라고 할 수 있다. 따라서 가연성 물질을 생산, 적재함으로 화재 및 폭발의 위험이 상존하며 화재가 발생하면 인화성 물질로 인한 대규모 화재와 폭발로 인하여 인명과 재산피해의 규모 또한 가중하기가 어렵다.

본 논문에서는 해양플랜트 화재시 화재와 폭발 두 가지 위험성 중 체제화재에 가지는 기자재를 평가할 수 있는 ISO 22889-1 시험방법과 설비에 대하여 설명하고자 한다.

1. 서 론

해양 플랜트는 해양 개발의 주목적이 되는 화석연료(원유 및 가스)확득을 위한 해양탐사, 시추, 및 생산, 저장, 하역설비 등을 통합을 하고 있다. 해양플랜트는 한 번 설치되면 20~30년에 걸쳐 사용되며 고도의 유지 관리 및 보수 기술이 요구되기 때문에 최고의 기자재가 동원되어야 한다. 또한 가연성 물질을 생산, 적재함으로 화재 및 폭발의 위험성이 상존하여 최근 해양 환경 보존 및 안전에 관한 요구가 강화되고 있는 추세이다. 해양 구조물에서 안전 사고의 약 2/3는 화재나 폭발에 의한 것이고 인화성 물질이 많아 대규모 사고로 발전할 우려가 크다.

따라서 해양플랜트에 적용되는 기자재는 체제화재 및 폭발에 저항성이 강한 자재가 사용되고 있으며 이러한 기자재의 화재실험을 하기 위한 방법 중에 하나가 ISO 22889-1에서 규정하고 있는 Jet fire test이다. 이 시험은 해외의 몇 개 안되는 기관에서 시험을 실시하고
있으며 국내에서는 최초로 한국조선해양기자재연구원에서 도입되어 시험을 실시하고 있다. 따라서 본 논문에서는 해양플랜트에 적용되는 기자재의 화재실험방법인 Jet fire test의 시험설비와 성능기준 등에 대하여 설명하고자 한다.

2. 사고 사례

해당 사고로 발생한 기름유출은 어패류의 폐사와 같은 심각한 손실로 인간의 생명을 위협할 수 있으며 복원 시기에는 많은 시간과 비용이 소모되어 사고 발생 전 미연에 방지하는 것이 최우선이다.

해양플랜트의 대표적인 사고 사례로는 사상 최악의 사고인 Piper Alphalpha와 가장 최근 멕시코만 Deepwater–horizon이 대표적이라고 할 수 있으며, Piper Alphalpha 석유공장의 경우 사고당시 2시간 이내에 90 m 외 Oil Platform은 화염에 휘어져 붕괴되고 167명의 사망자가 발생하였다.

또한 멕시코 만에서 발생한 Deepwater–horizon은 최소 2천만 달러의 원유가 멕시코 만을 뒤덮어 일대 생태 파난시 일부에서는 생명체가 사라지는 큰 후유증을 겪고 있다.

![Piper Alphalpha 및 Deepwater–horizon 사고](image)

3. 시험

3.1 시험방법

ISO 22899-1의 시험이 석유 화학 설비에서 발생할 수 있는 제트 화재에 물질이 어떻게 작용하는지 확인할 수 있으며 목적으로는 인화성 가스, 고압 액화 가스등 액체연료에 대규모 제트화재에 의한 열적 기계적인 부하를 실험하는 것이다.

현재 KS F 2257-1과 같은 건축구조물의 화재시험과는 다르게 주어진 온도 곡선이 아닌 그림 2의 노출을 통하여 액체의 프로판 가스를 기화기를 통하여 기체의 연료로 0.30±0.05 kg/sec 의 용량으로 1.5 m×1.5 m의 시편에 주어진 시간동안 분사된다.
그림 3. 제트 노즐의 위치와 실제 시험 사진

그림 3은 벽체의 기자재에 대한 Jet fire 시험시 사용되는 자재로부터 제트 노즐까지의 간격과 위치를 보여주고 있으며 실제 시험장면을 보여주고 있다.

3.2 온도의 측정

시험체의 온도측정은 직경 0.3 mm의 K Type 열전도가 사용되며 벽체의 경우 이음부위 및 온도상승이 예상되는 18개의 지점에서 측정되며 배관 보호기자재의 경우 그림 4에서와 같이 화재면에 설치되는 배관 보호용 기자재 안쪽에 설치되어 막게는 24의 측정지점에서 측정을 한다.

그림 4. 배관의 열전도 위치
3.3 성능 기준 및 표시

벽체와 같이 장벽을 이루는 시험체의 경우 화재 반대면으로 고온의 가스와화열이 관통하는 개구부가 없어야 하며 온도는 140 ℃ 이하로 규정하고 있다. 또한 강철 구조물의 경우 400 ℃ 이하로 규정하고 있다.

성능의 표시로는 ISO 13702에서 화재의 유형을 세밀로즈 화재(CF), 탄화수소 화재(HC) 및 제트 화재(JF)로 분류하고 있으며 제트 화재에 노출시간 60분일 경우 최대온도 상승이 300 ℃일 경우 아래와 같이 표현한다.

등급의 표기 : JF/구조적절강/400/60

4. 결 론

해양플랜트에서는 현재 가연성물질을 적재 및 생산을 하고 있음으로 화재시 화열을 동반하여 폭발에 이르는 대규모 화재로 발전할 수 있다. 따라서 플랜트에 적용되는 구조적인 침강재료 및 배관보호용 기자재, 벽체 및 방화물 등 많은 기자재가 Jet fire test의 가혹한 시험을 통하여 성능을 인정받은 기자재가 설치 및 시공되어 인명과 재산을 최소화 하고자 하고 있다. 마찬가지로 해양이 아닌 건축물 화재에서 가연성 적재물을 타는 공장이나 발전소 등에 화재와 폭발로부터 성능이 확인된 기자재가 설치 시공되어야 인명과 재산 피해를 최소화 할 수 있음을 것으로 사료된다.

참고문헌