미국의 건축물 내화설계절차에 관한 연구
박수진’ · 박상효’ · 홍화영’ · 권인규”

Study on the state of art of fire engineering design in USA
· Su-Jin Park’ · Sang-hyo Park’ · Hwa-Young Hong’ · In-Kyu Kwon”

*강원대학교 소방방재공학전공 학부생
**강원대학교 소방방재공학전공 교수

요 약

급속한 산업의 발달과 기술의 향상으로 건물은 점점 고층화, 다양화되고 있지만 이러한 건물에서 화재 시 대응방안은 아직 미흡한 실정이다. 건물이 다양해짐에 따라, 그에 따른 건물의 화재적응 또한 건물내의 가연성의 양, 종류 및 건물의 용도 등에 따라 다른 양상
을 띠고 있기 때문에 화재에 영향을 미치는 여러 가지 요소들을 충분히 고려하여 건물의
내화성능을 충족하여야 한다. 따라서 본 연구는 화재로 인한 인명과 구조적 피해를 줄이
고 보다 안전한 건축물을 설계하기 위하여 미국의 건축물 내화설계 절차에 관한 연구를
통하여 우리나라에 적합한 성능적 내화설계법을 도입하기 위한 기반자료를 도출한다.

1. 연구의 목적

건축물에서의 화재발생은 재산, 이용자 및 소방관련자의 인명피해와 건축물 구조재의
성능저하를 유발시켜 불의와 같은 재난이 발생될 수도 있다. 이러한 피해를 방지하기
위해서 주요 구조부재의 고유 기능 유지를 목적으로 하는 내화설계가 법과 규정으로 제시
되어 있으나, 우리 나라에서는 사양적 내화설계만을 적용하고 있다. 사양적 내화설계는 개
별 구조 요소와 구조체의 화재 시 성능을 반영하지 않아 건축물의 화재 위험도 평가와 신
기술 도입이 곤란한 실정이다. 따라서 본 연구는 각 건물의 구조요소와 구조체의 구조 특
성을 반영하여 보다 정확한 화재 위험도 설계와 평가가 가능한 미국 내화설계 절차를 연
구함으로써 우리나라에 적합한 성능 기반 내화 설계법 도입을 위한 기초 자료 도출을 목
적으로 한다.
2. 연구의 내용

2.1. 미국의 내화설계 메뉴얼

1) 구조의 설계 또는 선택

건축물 내에서 잠재적 화재발생의 위험이 가장 높은 구역은 구조적으로 가장 안전한 곳이 아닐 수 있다. 따라서 내화등급(FRRs ; Fire Resistance Ratings)을 결정하기 위하여 합리적으로 예측 가능한 화재 시나리오를 각 구획을 대상으로 내화설계를 수행한다.

2) 구획 화재하중의 결정

구획이 결정된 이후에는 각각 구획에 예측되는 화재 하중을 계산한다. 각 구획에서의 화재하중을 축정함으로써 가능하다. 이 표에서 계산된 화재하중은 용도에 따라 예측되는 평균 화재 하중으로 설정된다.

3) 구획 화재의 시간-온도 관계식

화재에 노출된 구획내부의 설계화재곡선(design fire curve)은 1990년대 초 유리코드에 처음으로 제안되었으며, ECCS에서는 다음 식(1)을 제안하였다.

\[Ti = 20 + 1325(1-0.324e^{-0.3t}-0.204e^{-1.7t}-0.472e^{-1.9t}) \]

식(1)

4) 강구조 부재의 시간-온도 관계 압축

건축물의 화재 구획내부는 보, 기둥 및 슬래브 등 다양한 구조부재로 형성되고 있다. 이들 각 부재는 설계화재곡선으로부터 1차원 열전달행렬을 통하여 계산가 가능하다. 또한 계산의 편의성과 적용의 단순화를 위하여 각 부재의 온도는 동일하다고 가정한다. 각각의 구조부재의 온도계산은 단면에서 각근의 특성을 가지고 있으나, 내력 평가를 위해서는 각각 부재의 온도와 단순계산가 이루어진다. 이러한 비교과정을 통하여 내화성능 유지와 설계 그리고 내화 수준을 평가할 수 있다.

2.2 내화설계 현대 접근법

1) 현재의 규정과 내화법규

2) 현재점

2.3 성능기반 설계의 원리

1) 성능기반설계

성능기반 설계는 폭넓은 설계 원리를 확실시하는 주목적, 건물의 특정한 양상을 위한 특정 설계 원리를 연급하는 부가적이고 기능적인 목적, 특정 설계 고려사항을 확실시하는 성능 요구조건, 이 세 가지로 형식으로 대별된다. 이 중 내화관련 성능 요구조건은 다음과 같다.

1) 화재가 발생된 이후, 화재는 최초 구역내로 한정된다.
2) 구조물은 건물로부터 빠른 피난이 가능하도록 화재 발생의 위험을 조기에 인식한다.
3) 구조물은 거주자의 피난, 소방구호자의 활동이 가능하도록 화재에 충분한 구조적 거동을 한다.
4) 화재는 인접 건물로의 확산과 인접 건물로부터 불이 옮겨지지 않는다. 또한 구조물의 부분 붕괴가 발생되었을 경우 건물 전체 붕괴의 가능성을 줄이고 안전성을 유지할 수 있는 구조 시스템으로 설계되어야 한다.

2.4 발전 가능성

각 구조부재를 대상으로 내화성능을 평가하는 방법은 제1세대 내화설계법이 며(Figure 2의 S1), 현재 건축물의 전체 형태를 대상으로 내화설계를 수행하는 제2세대 내화설계법이 적용과 연구중에 있다(Figure 1의 S2, S3).

![Figure 1. Fire curves and structures]

3. 결 론

현재 미국에서는 성능 기반 내화 설계법에 따라 건물의 내화 설계를 하고 있음에도 불구하고 더 많은 접근법을 통한 2세대 내화설계법을 연구 중이다. 아직 단조로운 건축물
에만 적합한 단순한 내화 설계법을 사용하는 우리나라 역사 성능기반 내화 설계법을 도입함으로써 합리적인 내화피복을 수행할 수 있을 것으로 판단된다. 또한 앞으로도 건축물의 화재 위험성을 점차 증대될 것이므로 각 건축물의 용도에 적합한 화재위험도의 평가와 이를 기반으로 수행되는 각 구성부재의 내력 평가를 정확히 산출할 수 있는 내화 설계법 연구가 진행되어야 할 것으로 판단된다.

감사의 글

본 논문은 2012년도 한국연구재단 연구비지원(과제명: 강구조 건축물의 내화설계 기반 연구)에 의한 연구결과의 일부분입니다. 연구지원에 도움을 주신 모든 분께 감사드립니다.

참고문헌

4. ASCE(2009), Performance-Based Design of Structural Steel for Fire Conditions
 A Calculation Methodology