Gate-Controlled Spin–Orbit Interaction Parameter in a GaSb Two–Dimensional Hole gas Structure

Youn Ho Park1,2, Hyun Cheol Koo1,3*, Sang-Hoon Shin1, Jin Dong Song1, Hyung-jun Kim1, Joonyeon Chang1, Suk Hee Han1, Heon-Jin Choi2

1Spin Convergence Research Center, Korea Institute of Science and Technology, Seoul 136-791,
2Department of Materials Science and Engineering, Yonsei University, Seoul 120-749,
3KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Korea

Gate-controlled spin-orbit interaction parameter is a key factor for developing spin-Field Effect Transistor (Spin-FET) in a quantum well structure because the strength of the spin-orbit interaction parameter decides the spin precession angle [1]. Many researches show the control of spin-orbit interaction parameter in n-type quantum channels, however, for the complementary logic device p-type quantum channel should be also necessary. We have calculated the spin-orbit interaction parameter and the effective mass using the Shubnikov-de Haas (SdH) oscillation measurement in a GaSb two-dimensional hole gas (2DHG) structure as shown in Fig 1. The inset illustrates the device geometry. The spin-orbit interaction parameter of 1.71×10^{11} eVm and effective mass of 0.98 m_0 are obtained at $T=1.8$ K, respectively. Fig. 2 shows the gate dependence of the spin-orbit interaction parameter and the hole concentration at 1.8 K, which indicates the spin-orbit interaction parameter increases with the carrier concentration in p-type channel. On the order hand, opposite gate dependence was found in n-type channel [1,2]. Therefore, the combined device of p- and n-type channel spin transistor would be a good candidate for the complimentary logic device.

References

Keywords: 2DEG, Quantum well, GaSb p-type, Rashba effect, Spin transistor