Characteristics of Molecular Band Energy Structure of Lipid Oxidized Mammalian Red Blood Cell Membrane by Air-based Atmospheric Pressure Dielectric Barrier Discharge Plasma Treatment

Jin Young Lee1, Ku Youn Baik1*, Tae Soo Kim1, Gi-Hyeon Jin2, Hyeong Sun Kim2, Jae Hyeok Bae2, Jin Won Lee2, Seung Hyun Hwang2, Han Sup Uhm1, and Eun Ha Choi1*

1Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 135-703, Korea, 2Guri High School, Guri 471-030, Korea

Lipid peroxidation induces functional deterioration of cell membrane and induces cell death in extreme cases. These phenomena are known to be related generally to the change of physical properties of lipid membrane such as decreased lipid order or increased water penetration. Even though the electric property of lipid membrane is important, there has been no report about the change of electric properties after lipid peroxidation. Herein, we demonstrate the molecular energy band change in red blood cell membrane through peroxidation by air-based atmospheric pressure DBD plasma treatment. Ion-induced secondary electron emission coefficient (γ value) was measured by using home-made gamma-focused ion beam (γ-FIB) system and electron energy band was calculated based on the quantum mechanical Auger neutralization theory. The oxidized lipids showed higher gamma values and lower electron work functions, which implies the change of surface charging or electrical conductance. This result suggests that modified electrical properties should play a role in cell signaling under oxidative stress.

Keywords: Lipid peroxidation, DBD plasma, gamma-focused ion beam