Experimental Demonstration of Enhanced Transmission Due to Impedance-matching Si$_3$N$_4$ Layer in Perforated Gold Film

Myung-Soo Park1,2, Su-Jin Yoon1, Je-Hwan Hwang1, Sang-Woo Kang1, Deok-kee Kim1, Zahyun Ku3, Augustine Urbas3, Sang Jun Lee1

1Division of Industrial Metrology, Korea Research Institute of Standards and Science, Daejeon 305-340, Korea, 2Department of Electrical Engineering, Sejong University, Seoul, Korea, 3Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA

In this study, surface plasmon resonance structures for the selective and the enhanced transmission of infrared light were designed. In order to relieve the large discontinuity of refractive index between air and metal hole array, Si$_3$N$_4$ was used as the impedance matching layer. Experimental parameter were calculated and determined in advance by the rigorous coupled wave analysis (RCWA) simulation, and then the experiment was carried out. A 2-dimensional metal hole array structures were patterned on the size of 1×1 cm2 GaAs substrate using photolithography process, and 5 nm thick Ti, 50 nm thick Au were deposited by E-beam evaporator, respectively. Subsequently, Si$_3$N$_4$ films with various thicknesses (150, 350, 550, and 750 nm) were deposited by plasma enhanced chemical vapor deposition (PECVD). For the comparison, transmittance of specimens with and without Si$_3$N$_4$ was measured using Fourier transform infrared spectroscopy (FTIR) in the range of 2.5-15 μm. Furthermore, the surface and the cross-sectional images were collected from the specimens by scanning electron microscopy (SEM). From the results, it was demonstrated that the transmittance was enhanced up to 80% by the deposition of 750 nm Si$_3$N$_4$ at 6.23 μm. It has advantage of enhanced transmission despite the simple fabrication process.

Keywords: surface plasmon, impedance matching, metal hole array, infrared