Low Temperature Synthesis of TiO$_2$ Films for Application to Dye-sensitized Solar Cells

위진성1, 최은창1, 서영호2, 홍병유1,2*

1성균관대학교 정보통신공학부, 2성균관대학교 태양광시스템공학협동과정

Dye sensitized solar cells (DSSCs) are regarded as potential inexpensive alternatives to conventional solid-state devices. The flexible version, employing conductive-plastic-film substrates, is appealing for commercialization of DSSCs because it not only reduces the weight and cost of the device but also extends their applications. However, the need for high temperature does not permit the use of plastic-film substrate. So, development of low-temperature methods is therefore realization of flexible DSSCs. In this work, the electrophoretic deposition combined with hydrothermal treatment was employed to prepare nanocrystalline TiO$_2$ thin film at low temperature. We confirmed the prepared TiO$_2$ thin films with different voltages and deposition times in the electrophoretic deposition process. Properties of the TiO$_2$ films were investigated by various analysis method such as X-ray diffraction, field emission scanning electron microscopy (FESEM) and UV-visible spectrophotometer.

Keywords: TiO$_2$, DSSC

Electrophoretic Deposition method

- TiO$_2$ suspension fabrication

Mixture

Source: 0.5g TiO$_2$ powder (Degussa P25) + 0.034 g Tetra-n-butyli titanate (TBT)
Solvent: 8 mL butanol + 4 mL isopropanol + 2 mL ethanol

Driving

Stirring for 2 hrs on the hot-plate

Hydrothermal method

Solution: D. I. water
For 4 hrs at 100 $^\circ$C (using autoclaves)

Weiwei Tan et al., J solid State Electrochemical (2009) 13, 651

Conditions of the electrophoretic deposition

<table>
<thead>
<tr>
<th>Parameters</th>
<th>conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>40, 50, 60 V</td>
</tr>
<tr>
<td>Deposition time</td>
<td>1, 5, 10 min</td>
</tr>
</tbody>
</table>