Irradiation enduced In–plane magnetization in Fe/MgO/Fe/Co multilayers

Jitendra Pal Singh, Weon Cheol Lim, Jonghan Song, Jaeyeoul Kim, K. Asokan, Keun Hwa Chae

Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02791, Korea, Materials Science Division, Inter University Accelerator Centre, New Delhi-110067, India.

For present investigation Fe/MgO/Fe/Co multilayer stack is grown on Si substrate using e-beam evaporation in ultrahigh vacuum. This stack is irradiated perpendicularly by 120 MeV Ag\textsuperscript{+\textsubscript{8}} at different fluences ranging from 1×1011 to 1×1013 ions/cm2 in high vacuum using 15UD Pelletron Accelerator at Inter University Accelerator Centre, New Delhi. Magnetic measurements carried out on pre and post irradiated stacks show significant changes in the shape of perpendicular hysteresis which is relevant with previous observation of re-orientation of magnetic moment along the direction of ion trajectory. However increase in plane squareness may be due to the modification of interface structure of stacks. X-ray reflectivity measurements show onset of interface roughness and interface mixing. X-ray diffraction measurements carried out using synchrotron radiation shows amorphous nature of MgO and Co layer in the stack. Peak corresponding body centered Fe [JCPDS-06-0696] is observed in X-ray diffraction pattern of pre and post irradiated stacks. Peak broadening shows granular nature of Fe layer. Estimated crystallite size is 22±1 nm for pre-irradiated stack. Structural quality of these stacks was further studied using transmission electron microscopic measurements. Thickness from these measurements are 54, 36, 23, 58 and 3 nm respectively for MgO, Fe, MgO, Fe+Co and Au layers in the stack. These measurements envisage poor crystallinity of different layers. Interfaces are not clear which indicate mixing at interface. With increase fluence mixing and diffusion was increased in the stack. X-ray absorption spectroscopic measurements carried out on these stacks show changes of Fe valence state after irradiation along with change of O(2p)-metal (3d) hybridized state. Valence state change predicts oxide formation at interface which causes enhanced in-plane magnetization.

Keywords: Magnetization, ion irradiation, Fe/MgO/Fe/Co multilayered thin film