A Geochemical Study on Trace Elements in the Granitic Rocks in relation to Mineralization in the Limestone Area of the Taebaegsan Basin

Jae Yeong Lee*

Abstract: Various skarn ore deposits of Pb-Zn, Fe-Cu, W-Mo and others are widely distributed in the study area which consists mainly of Cambro-Ordovician calcareous rocks. The ore deposits are all in close association with specific types of granitic rocks of mid-late Cretaceous age according to the kinds of ores: Fe-Cu deposit with granodiorite-quartz monzodiorite, Pb-Zn deposit with granite-granodiorite, W-Mo deposit with granite, and Mn deposit with quartz porphyry.

The granitic rock of Fe-Cu deposit has lower content in K and higher in Ca than those of Pb-Zn deposits. On the contrary, the granitic rock of W-Mo deposit has much higher content in K and lower in Ca in comparison to those of Pb-Zn deposits. However, the granitic rock of Mn deposit shows similar variation to those of Pb-Zn deposits.

Lithophile trace elements of Sr and Rb tend to vary in close relation with major elements of K and Ca, respectively. In good contrast, chalcophile elements of Cu, Pb, Zn, W and Mo are enriched in the granitic rocks of their ore deposits, and other trace elements of Ni and Co show a trend to vary in relation with Mg, Fe and Cu, which have the same replacement index (0.14) as Ni and Co. Average K/Rb and Ca/Sr ratios of the granitic rocks range nearly within 300–150 and 150–40, respectively, and the distribution pattern of the ratios is different according to the kind of ore deposits: Fe-Cu deposit is plotted toward K-Rb poor region whereas Pb-Zn and W-Mo deposits toward K-Rb rich region. In contrast, Fe-Cu and Fe deposits are plotted toward Ca-Sr rich region whereas Pb-Zn deposit toward Ca-Sr poor region. The variation trend of chemical elements of the mid-late Cretaceous granitic rocks in the study area is similar to that of the Cretaceous granitic rocks in the Gyeongsang Basin. Therefore, this geochemical result may be applicable to determining what kinds of ore deposits a Cretaceous granitic rock is favourable for, and whether it is productive or non-productive for systematic geochemical exploration works.

INTRODUCTION

In the Taebaegsan Ore Belt which consists mainly of the Cambro-Ordovician calcareous rocks in the southern part of the Taebaegsan Basin, skarn ore deposits of Pb-Zn, Fe-Cu and W-Mo are widely distributed from the western to the eastern margin in the area in close association with the mid-late Cretaceous granitic rocks (Yun and Silberman, 1979; Yun, 1983), and it is expected that blind ore deposits might exist at the contact zones of the calcareous country rocks with the granitic rocks at certain depths. Therefore, the limestone area including the Taebaegsan Ore Belt was selected for this study.

Active mineral exploration works have been carried out in the Taebaegsan Ore Belt by applying geochemical and geophysical prospecting methods to find blind ore deposits. As for geochemical exploration works a great number of stream sediments, heavy mineral concentrates (Lee, 1969), soil samples have been chemically analysed to investigate the secondary dispersion
patterns of pathfinders, which are useful to find anomalies of the blind ore deposits. In spite of these active exploration works, however, primary dispersion patterns of trace elements in the granitic rocks have not been investigated so far in relation to mineralization, although it is important and fundamental not only for geochemical exploration but also for research works in lithochemistry and economic geology.

As certain kinds of ore deposits are associated with specific types of plutonic rocks, and the association has been used for mineral exploration, it is also possible to explore ore deposits by using the primary dispersion patterns of certain elements in the plutonic rocks. Therefore, it has been the focus of attention to determine the characteristics of the dispersion patterns in the mid-late Cretaceous granitic rocks according to various ore deposits of Fe-Cu, Pb-Zn and W-Mo in the Taebaeksang Ore Belt. Interesting geochemical results had already been obtained from similar geochemical study on the Cretaceous granitic rocks in the Gyeongsang Basin (Lee, 1984).

Fortunately, a number of analytical data of the granitic rocks have been collected from geochemical and lithochemical works in the limestone area, and these data make it possible to carry out this geochemical study in the Taebaeksan Ore Belt and its vicinity of the area.

In this context the investigation on content of major and trace elements in the granitic rocks in relation to mineralization has a significant importance. Therefore, in this study the content of major (Na, K, Ca, Mg) and trace (Rb, Sr, Cu, Pb, Zn, W, Mo, Ni and Co) elements were compared between the granitic rocks associated with various ore deposits of Mn, Fe-Cu, Pb-Zn and W-Mo, and this work was focussed on finding geochemical difference between the granitic rocks of Fe-Cu and Pb-Zn deposits.

As various ore deposits are associated with the mid-late Cretaceous granitic rocks in the area, the results of the geochemical study may be useful to determine whether a Cretaceous granitic intrusive would be productive or non-productive, and favourable or unfavourable for

Fig. 1 General geology of the Taebaeksan zone with mine localities.
certain ore deposits by comparing with the Cretaceous granitic rocks from the Gyeongsang Basin.

GENERAL GEOLOGY

The Taebaeksan Ore Belt is located in the northeastern part of the Ogcheon Fold Belt, which is one of the four main geologic provinces including Gyeonggi Massif, Ryongnam Massif and Gyeongsang Basin. The two massifs composed of Pre-cambrian schist and granite form the basement for the Ogcheon Fold Belt (Reedman and Um, 1975).

The northeastern zone of the Ogcheon Fold Belt is a non-metamorphic and Neo-geosynclinal, while the southeastern zone is a metamorphic and Paleo-geosynclinal. The former is composed of terrain of the Cambro-Ordovician calcareous rocks (The Great Limestone Group and Yeongweol Group) and sandstone-shale of the Carboniferous to Triassic age (Pyeongan System), which were all intruded by the mid-late Cretaceous granitic rocks forming various skarn deposits (Fig. 1). On the contrary, the latter consists predominantly of deformed schist, gneiss, quartzite, limestone, and dolomite of the late Proterozoic age.

Most of the deformation in the Ogcheon Fold Belt is known to be related to the major orogeny of Jurassic age, which involved the emplacement of north-northeast trending Daebo granites, and the two zones display differences in the geological structure (Yun, 1979a).

The non-metamorphic zone is highly folded, and has numerous high angle thrust faults and zones of imbrication. The folds are more commonly concentric than in the metamorphic zone, and the strata have brittle fractures. In good contrast, the metamorphic zone is characterized by major similar folds and ubiquitous penetrative minor structures resulting from intensive plastic deformation, and axial plane, crenulation foliation and a variety of types of tectonic lineation are found in the the strata (Reedman and Um, 1975; Yun, 1979a).

METALLOGENY

Most mineral deposits in South Korea are closely associated with the Mesozoic granitic rocks of the mid Cretaceous - early Tertiary Bulgugsa granites and masanites, and Jurassic Daebo granites (Kim, 1971; Lee, 1972).

The major mineral deposits related to the Cretaceous granitic rocks occur as hydrothermal vein or breccia pipe deposits in the Gyeongsang Basin, in which the ore deposits are distributed in metallogenic pattern of Cu-Fe, Pb-Zn and W-Mo from the southeastern coast to inland (Sillitoe, 1977; Min et al., 1980).

In good contrast, the major mineral deposits related to the Cretaceous granitic rocks occur as

Table 1 A brief geological description of mines.

<table>
<thead>
<tr>
<th>Id. No.</th>
<th>Mines</th>
<th>Main ore metals</th>
<th>Intrusive</th>
<th>Country rock</th>
<th>Main ore minerals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Oesangcheon</td>
<td>Mn</td>
<td>Quartz porphyry</td>
<td>Calcareous rocks</td>
<td>Mn-oxides</td>
</tr>
<tr>
<td>2.</td>
<td>Dongnam</td>
<td>Pb-Zn</td>
<td>Quartz porphyry</td>
<td>Calcareous rocks</td>
<td>Galena/Sphalerite</td>
</tr>
<tr>
<td>3.</td>
<td>Imog</td>
<td>Pb-Zn</td>
<td>Granite</td>
<td>Calcareous rocks</td>
<td>Galena/Sphalerite</td>
</tr>
<tr>
<td>4.</td>
<td>Sinyemi</td>
<td>Pb-Zn</td>
<td>Granite</td>
<td>Calcareous rocks</td>
<td>Galena/Sphalerite</td>
</tr>
<tr>
<td>5.</td>
<td>Yeonwha II</td>
<td>Pb-Zn</td>
<td>Quartz monzonite porphyry</td>
<td>Calcareous rocks</td>
<td>Galena/Sphalerite</td>
</tr>
<tr>
<td>6.</td>
<td>Geodo</td>
<td>Fe/Cu</td>
<td>Granodiorite+Quartz monzodiorite</td>
<td>Calcareous rocks</td>
<td>Magnetite/Chalcopyrite</td>
</tr>
<tr>
<td>7.</td>
<td>Dongnam</td>
<td>Fe</td>
<td>Diorite</td>
<td>Calcareous rocks</td>
<td>Magnetite</td>
</tr>
<tr>
<td>8.</td>
<td>Sangdong</td>
<td>W-Mo</td>
<td>Granite</td>
<td>Calcareous rocks</td>
<td>Scheelite/Molybdenite</td>
</tr>
</tbody>
</table>
contact metasomatic or replacement deposits in
the study area of the Cambro-Ordovician calca-
reous rocks in the Taebaek-san Basin.

The major important ore minerals are Mn-
oxides and rhodochrosite for Mn ore deposits
sphalerite and galena for Pb-Zn skarn ore
deposits, magnetite and chalcopyrite for Fe-Cu
ore deposits and scheelite and molybdenite for
W-Mo ore deposits. These ore minerals are
associated with various other sulphides. Most
deposits are characterized by various types of
hydrothermal alteration, and the skarn minerals
are arranged in a zonal pattern from the intru-
sives toward fresh calcareous rocks.

According to the ternary diagram of Rb-Ba-
S, most intrusives were partly altered to
anomalous granitic rocks and resemble base-metal
mineralized calc-alkaline palingenic granodiorite
(Yun, 1979b).

The representative ore deposits related to the
granitic rocks in the study area are as followings
(Table 1):

Mn Ore Deposits

Oesangcheon Mine: Secondary enriched Mn-ore
deposits are developed near surface along north-
westernly trending fault in the Ordovician
calcareous rocks of Samtaesan Formation.

Supergene enrichment of Mn-oxides has
resulted from oxidation of pre-existing Mn-
carbonate, chiefly of rhodochrosite which was
mineralized in close association with the Creta-
ceous quartz porphyry. Most of associated
sulphides of galena and pyrite were removed
during weathering, and the resulting Mn-oxides
are chiefly of manganite, pyrolusite and crypto-
melanget (Lee and Hwang, 1984).

Pb-Zn Ore Deposits

Yeonwha Mine: Ore bodies occur in association
with skarns in the Cambro-Ordovician calcareous
rocks of Myobong, Pungchon and Hwajeol
Formations (Han, 196 & 1972).

The ore minerals, sphalerite and galena are
associated with clinopyroxene at the upper part
and with clinopyroxene-garnet at the lower part
of the Wolam I ore body at Yeonwha I. The
pyroxene-garnet zone is in pipe-type at depth
but branches to rhodochrosite-pyrite veins toward
the surface in an area of quartz porphyry dikes.
Skarns at Yeonwha II display higher garnet/
pyroxene ratio and occur as stratabound lenses
and irregular massive at or near contacts with
larger bodies of quartz monzonite (Yun, 1983).

Although rhodochrosite occurs in association
with Pb-Zn ores at Yeonwha deposits, it was
not as much oxidized as the Oesangcheon super-
gene Mn deposit.

Sinyemi Mine: Ore bodies are developed in
the Maggol limestones of Cambro-Ordovician
age in close association with Cretaceous quartz
monzonite porphyry. They occur in the skarnized
carbonate beds at the west side and as pipe-like
or irregular veins at the east side of the ore
bodies. The Maggol limestone beds are selectively
replaced by hydrothermal solution under control
of geologic setting. The west ore bodies might
be formed in an early stage of mineralization
(Kim et al., 1981).

The hydrothermal alteration of the ore-related
granitic rocks includes sericitization of feldspar
and biotite near ore body, and propylitization
of calcic plagioclase and biotite toward fresh
host carbonate. Argillie alteration of feldspar
and silification of host calcareous rocks is
observed in some zones.

Sphalerite and galena are main ore minerals.
Chalcopyrite, pyrrhotite, pyrite and arsenopyrite
are associated with them.

Imog Mine: Ore bodies are emplaced in
Dumudong argillicous limestone near the contact
zone with Imog granite. Ore lodes are about
100m long and 0.2~1.0 m wide, and dip 70°
westly striking NS-N15°E. Sphalerite and
galena are associated in the lodes as main ore
minerals with other sulphides of chalcopyrite,
pyrrhotite, pyrite and arsenopyrite (Seo, 1985).

Fe and Pb-Zn Ore Deposits

Dongnam Mine: There are three types of ore deposits. One is magnetite deposit which was formed at the contact zone of the Cambro-Ordovician calcareous rocks with diorite, and another one is hydrothermal veins of galena, sphalerite and rhodochrosite which were formed by quartz porphyry along NS faults, and the last is stockwork of molybdenite in the diorite. Mn-oxides are enriched at surface by supergene oxidation of the rhodochrosite (Seo and Lee, 1983).

Most calcareous rocks are thermally metamorphosed at the contact zone of the intrusive rocks. Albite-epidote-hornfels are formed from pelitic Myobong slate and hornblende-hornfels from Pungchon limestone. The quartz porphyry also shows wallrock alteration of epidote-chlorite-calcite and kaolinite-muscovite-chlorite facies.

Fe-Cu Ore Deposits

Geodo Mine: There are two kinds of ore deposits of iron skarn and copper skarn ores at the contact zones of the Cambro-Ordovician calcareous rocks with quartz monzodiorite (Chang and Park, 1982; Ko and Kim, 1982). The Iron skarn ore deposit (Jangsang ore body) is located along the southern margin, and the upper skarn ore deposit (78 ore body) along the northern margin of the quartz monzodiorite. Skarn minerals are zonally arranged at both deposits (Yun, 1983).

The iron skarn ore deposit is hosted in the quartz monzodiorite as a typical endo-skarn type, and shows a skarn zoning from center of the ore body toward outer side: magnetite zone, magnetite-garnet zone, garnet-clinopyroxene zone, and clinopyroxene-epidote-plagioclase zone. Magnetite is associated mainly with the garnet.

The copper skarn ore deposit is hosted in the calcareous rocks and shows a zoning from the quartz monzodiorite toward the countryrock: orthoclase-epidote zone, epidote-clinopyroxene zone, and clinopyroxene-garnet zone. Chalcopyrite is associated mainly with the clinopyroxene-garnet.

W-Mo Ore Deposits

Sangdong Mine: W skarn ore deposit is enriched in the imbedded limestone in the Myobong slate and the lower parts of the Pungchon Limestone Series of Cambro-Ordovician age.

The ore deposit is of metasomatic replacement type which was formed by ascending mineralizing fluid probably derived from an inferred magma within 1km below the present Sangdong ore deposit (Moon, 1984). Later Sangdong granite was found within the depth as ore-relating intrusive (Kim, 1986).

The ore deposit shows an unusual zonal distribution of skarn of quartz-mica, amphibole and pyroxene-garnet from its central part toward unaltered limestone. This indicates that ore deposit was formed inward from the outer contacts with limestone (Moon, 1974).

Scheelite is a main ore mineral, but molybdenite occurs with other sulphides such as bismuthinite and chalcopyrite (Moon and Hang, 1980).

GRANITIC ROCKS

The granitic rocks are distributed in close spatial association with ore deposits in the study area, and have been investigated to be mostly related to the mineralization of the ore deposits (Yun, 1979b; Chang and Park, 1982; Seo and Lee, 1983; Lee and Hwang, 1984; Kim, 1986).

The content of trace elements in the granitic rocks at Imog, Geodo and Yeonwha II also indicate that the granitic rocks are similar to Tauson's paligenic calc-alkaline granitoids, which has potential ore capacity of, and genetically related to the mineralization of Cu, Pb, Zn, W, Mo, Sn and Au (Yun, 1979b).
Chemical Composition

The granitic rocks with high silica contents are generally high in alkalies, but low in lime, magnesia and iron oxides; whereas the granitic rocks with low silica content are high in lime, magnesia and iron oxides, but low in alkalies in the study area. This regular variation of major oxides against SiO₂ coincides with the statistical proportion of those in common plutonic rocks.

The granitic rocks fall in categories of granite (or quartz porphyry), granodiorite and diorite on the basis of SiO₂ content, which is relatively consistent with the classification based on modal compositions.

According to SiO₂ content and modal composition, granodiorite-quartz monzonodiorite of Geodo Fe–Cu mine ranges 51~64% in SiO₂, which decreases to 50~54% for quartz monzonodiorite in contact with Cu-bearing deposit. In good contrast, diorite of Dongnam Fe mine has also low SiO₂ content of 53~58% similiary to Geodo mine. However, granite-granodiorite of various Pb–Zn mines including Dongnam Pb–Zn deposit has high SiO₂ content of 64~70%, which increases to 73~75% for granite (quartz porphyry) at Oesangcheon Mn mine. SiO₂ content is also very high (70~76%) for Sangdong granite, which is, however, much altered near the contact. In the comparison with other granitic rocks, this alteration must be considered.

The granitic rocks in the study area were fractionally crystallized in the order of Geodo granodiorite, quartz monzonite porphyry and Imog granite from co-magma (Yun, 1985), showing low K and high Ca at Geodo mine, and high K and low Ca at Imog mine. This order, however, is not well reflected in K/Rb and Ca/Sr ratios. But the fractional crystallization of Imog granite is indicated by the variation patterns of K/Rb and Ca/Sr ratios toward the central part of the intrusive.

According to the AFM diagram (Fig. 2) the chemical composition of the granitic rocks in the study area shows a trend to change from intermediate to felsic with close relationship to types of ore deposits. This variation is broadly analogous to that in the Gyeongsang Basin (Lee, 1984).

Mineralogical Composition

The granitic rocks are classified mainly into granite, granodiorite, quartz monzonite and

Fig. 2 Chemical variation of granitic rocks in relation to types of ore deposits.
- (Fe–Cu), △ (Pb–Zn) ○ (W–Mo)
○ (Mn), ○ (Fe)

Fig. 3 Classification of granitic rocks from the study area. Symbols are the same as Fig. 2.
quartz monzodiorite according to the ternary diagram of modal composition (Fig. 3), which normative composition largely coincides with, and is only slightly richer in orthoclase.

The general variation trend of normative composition (Fig. 4) displays magmatic differentiation from granodiorite to granite, and strongly indicates that kinds of ore deposits are associated with specific types of granitic rocks in the study area. This variation is broadly analogous to that of the crystallization path of the Cretaceous granitic rocks in the Gyeongsang Basin (Jin et al., 1982), and changes from plagioclase toward quartz-orthoclase side of the diagram.

![Diagram](image)

Fig. 4 Variation of normative composition in granitic rocks. Symbols are the same as Fig. 2.

GEOCHEMISTRY

Major Elements

As major elements play an important role chemically and petrochemically in the variation of trace elements, it is necessary to investigate the variation trend of some important major elements which are related to the variation of trace elements.

Content of major elements shows a characteristic difference between granitic rocks of various deposits of Mn, Pb-Zn, Fe-Cu, and W-Mo in the study area. Granitic rock of the Fe-Cu deposit at the Geodo mine has content lower in K and higher in Ca than those of Pb-Zn deposits at the Imog, Yeonwha II and Sinyemi mines. On the contrary, granitic rock of the W-Mo deposit at the Sangdong mine has content much higher in K and lower in Ca in comparison to those of Pb-Zn deposits. However, granitic rock of the Mn deposit at the Oesangcheon mine shows similar variation trend to those of Pb-Zn deposits. This may be due to mineral association of galena and sphalerite to rhodochrosite at the Oesangcheon mine, from which Mn-oxides were formed by supergene enrichment.

In contrast to K, Na content shows some irregular variation trends. For instance, it is lower at the Dongnam Pb-Zn deposit than at

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of mines</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Nos. of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Oesangcheon</td>
<td>2.49～5.01</td>
<td>1.02～4.41</td>
<td>0.18～1.70</td>
<td>0.01～0.76</td>
<td>8.9</td>
</tr>
<tr>
<td>2.</td>
<td>Dongnam (Pb-Zn)</td>
<td>0.17～2.78</td>
<td>4.05～6.48</td>
<td>0.16～0.88</td>
<td>0.12～0.24</td>
<td>4.7</td>
</tr>
<tr>
<td>3.</td>
<td>Imog</td>
<td>2.44～2.61</td>
<td>3.20～3.57</td>
<td>1.66～2.34</td>
<td>0.48～0.81</td>
<td>10.7</td>
</tr>
<tr>
<td>4.</td>
<td>Sinyemi*</td>
<td>2.58～3.26</td>
<td>2.81～5.05</td>
<td>1.97～2.69</td>
<td>0.08～0.14</td>
<td>4.7</td>
</tr>
<tr>
<td>5.</td>
<td>Yeonwha II**</td>
<td>2.52～2.92</td>
<td>3.65～4.02</td>
<td>1.19～1.97</td>
<td>0.11～0.28</td>
<td>6.7</td>
</tr>
<tr>
<td>6.</td>
<td>Geodo</td>
<td>1.67～3.26</td>
<td>2.44～4.49</td>
<td>2.30～4.21</td>
<td>1.45～2.74</td>
<td>9.9</td>
</tr>
<tr>
<td>7.</td>
<td>Dongnam (Fe)</td>
<td>1.67～2.47</td>
<td>2.07～2.93</td>
<td>3.59～5.43</td>
<td>2.88～5.81</td>
<td>5.7</td>
</tr>
<tr>
<td>8.</td>
<td>Sangdong***</td>
<td>0.84～2.35</td>
<td>3.50～4.65</td>
<td>0.41～1.08</td>
<td>0.08～0.59</td>
<td>32.7</td>
</tr>
</tbody>
</table>

Data from *(Kim, K.H. et al., 1981), **(Yun, S.K., 1979), ****(Kim, K.H., 1986)*

unit=%, ()=average
the Geodo Fe–Cu deposit.

According to the variation trend of major elements there is a trend that the granitic rock related to Cu mineralization has content lower in Na and K, and higher in Ca in comparison to the granitic rocks related to Pb–Zn mineralization, because the Cu deposit occurs in close association with less differentiated granitic rocks than Pb–Zn deposits.

Thus, the difference in the content of major elements between granitic rocks of various deposits seems to be reflected more clearly in K and Ca (Table 2a).

This variation trend of major elements may be useful in distinguishing types of granitic rocks and determining favorable mineralization of the mid-late Cretaceous granitic rocks in the study area.

This variation trend between various ore deposits of Fe–Cu, Pb–Zn and W–Mo is compared with that between the metallagenic provinces of Fe–Cu, Pb–Zn and W–Mo in the Gyeongsang Basin.

Sodium: There is not a clear difference in Na content between granitic rocks of various deposits in the study area. However, Na shows a weak variation trend decreasing in the order of Mn deposit > Pb–Zn deposit > Fe–Cu deposit > W–Mo deposit.

This difference in Na content is displayed better by its average content (Fig. 5); The average is lower at the Geodo Fe–Cu deposit (2.48%) than at the Pb–Zn deposits of Yeonwha II (2.71%) and Sinyemi (3.02%) except Dongnam (1.90%). However, this low average of the Dongnam mine is slightly higher than that of the Sangdong mine (1.78%). This is due to anomalous alkali content (low Na/high K) of Sangdong granite, which was altered near the contact (Kim, 1986). The highest in the study area is 3.17% at the Mn deposit. This is due to the variation trend of Na which is concentrated more in felsic rocks during fractionation.

This variation trend of the averages, slightly higher at the Pb–Zn deposits than the Fe–Cu deposits is consistent with that of the Gyeongsang Basin, where Na is 2.97% in Pb–Zn province against 2.40% in Cu province. However, the lowest value is obtained from the W–Mo deposits although Mo province has highest average (3.1%) in the Gyeongsang Basin (Lee, 1984).

Potassium: There is a clear difference in the K content between granitic rocks of various deposits in the study area, showing a variation trend that K decreases in the order of W–Mo deposit > Pb–Zn deposit > Fe–Cu deposit. However, the difference between W–Mo and Pb–Zn deposits is not so clear, and Mn deposits has a wide range of variation which covers most of the other ore deposits.

Similarly to Na, the difference in K content is clearly displayed by its average content (Fig. 6); The average is lower at the Geodo Fe–Cu deposits (3.01%) than at the Pb–Zn deposits of Imog (3.39%), Yeonwha II (3.83%), Sinyemi (4.06%) and Dongnam (4.95%). It is much lower in comparison to the Sangdong W–Mo
deposits (4.10%).

The variation trend of K content, higher at the Pb-Zn deposits than at the Fe-Cu deposits also coincides with that of the Gyeongsang Basin, where K is 2.90-4.79% (av. 3.59%) in Pb-Zn province and 1.43-4.31% (2.59%) in Cu province. But the tendency that the W-Mo deposits has higher K content than the Pb-Zn deposits is in opposite relation to the Gyeongsang Basin, where K is 2.21-4.10% (av. 3.13%) in Mo province against 2.90-4.79% (av. 3.59%) in Pb-Zn province (Lee, 1984).

Calcium: There is also a clear difference in Ca content between granitic rocks of various deposits in the study area. Ca decreases in the order of Fe deposit > Fe-Cu deposit > Pb-Zn deposit > Mn, W-Mo deposit. However, the difference between Mn and W-Mo deposits is not clear.

This opposite variation trend of Ca content to K is more clearly displayed by its average (Fig. 7); The average is higher at the Geodo Fe-Cu deposits (2.9%) than at the Pb-Zn deposits of Yeonwha II (1.72%), Imog (2.7%) and Sinyemi (2.32%), and it is much higher than those of the Sangdong W-Mo deposit (0.80%) and the Oesangcheon Mn deposit (0.60%).

This variation trend of Ca content between the Fe-Cu, Pb-Zn and W-Mo deposits is consistent with that of the Gyeongsang Basin, where Ca is 1.63-5.49% (av. 2.9%) in Cu province and 0.33-2.55% (1.03%) in Pb-Zn province and 0.33-2.18% (0.97%) in Mo province (Lee, 1984).

Magnesium: There is a clear difference in Mg content between granitic rocks of Fe-Cu and other ore deposits in the study area showing a variation trend that Mg decreases in the order of Fe deposit > Fe-Cu deposit > Pb-Zn, Mn, W-Mo deposits. There is not a distinguishable difference between Pb-Zn, Mn and W-Mo deposits.

The difference in Mg content between the Pb-Zn, Mn and W-Mo deposits is not displayed even by its averages (Fig. 8); The averages are all less than 1% except those of Dongnam Fe deposit (4.14%) and the Geodo Fe-Cu deposit (2.03%).

The variation trend between the Fe-Cu and Pb-Zn deposits coincides with that of the Gyeongsang Basin, where Mg content is higher than...
in Cu province than in Pb-Zn province (Lee, 1984). This variation trend is consistent with the general variation pattern of Mg because a Fe-Cu deposit is related to less felsic rocks in comparison to a Pb-Zn deposit.

Trace Elements

The content of certain trace elements also shows characteristic difference between the granitic rocks of various ore deposits, especially of Fe-Cu and Pb-Zn in the study area.

Lithophile trace elements of Rb and Sr tend to vary in close relation with major elements of K and Ca. In contrast, chalcophile elements of Cu, Pb, Zn, W and Mo are enriched in the granitic rocks of their ore deposits, and other trace elements of Ni and Co show a trend to vary in relation with Fe, Mg and Cu due to their similar replacement index (0.14) between them (Table 2b).

Most trace elements were taken up by the crystallizing silicates during the differentiation of the granitic magma, substituting for major elements. However, ore metal markedly dissimilar to major elements were concentrated in the residual melt of the granitic magma, and enriched in the productive granitic rocks in the study area.

The variation trend of trace elements in the study area is also compared with that in the Gyeongsang Basin (Lee, 1984).

Rubidium: There is a slight difference in Rb content between the granitic rocks of various ore deposits in the study area. Rb decreases in the same order of W-Mo deposit > Pb-Zn deposit > Fe-Cu deposit as K. For instance, Rb content is 110-171ppm at the Geodo Fe-Cu deposit which is lower than 87-236ppm of the
Yeonwha II Pb-Zn deposit and much lower than 238-360 ppm of the Sangdong W-Mo deposit.

This difference of Rb content is reflected more clearly by its average content (Fig. 9); The average of Rb at the Geodo Fe-Cu deposit (139 ppm) is apparently lower than those of the Pb-Zn deposits at the Yeonwha II (165 ppm), Imog (141 ppm) and Sinyemi (147 ppm), and considerably lower in comparison to the Sangdong W-Mo deposit (283 ppm).

This variation trend of Rb similar to K is due to its affinity to K. Rb content increases with K content by being admitted into K-minerals such as biotite and potash feldspar in the granitic rocks. This coincides with K variation in the study area, where K content is higher at the Yeonwha II Pb-Zn deposit and Sangdong W-Mo deposit than at the Geodo Fe-Cu deposit.

This distinguishable content difference between various ore deposits is largely consistent with that of the Cretaceous granitic rocks between the provinces of Fe-Cu, Pb-Zn and W-Mo in the Gyeongsang Basin, where Rb is 75~190 ppm (114 ppm) in Fe-Cu province which is lower than 70~230 ppm (149 ppm) in Pb-Zn province and 95~220 ppm (152 ppm) in W-Mo province.

Strontium: There is a clear difference in Sr content between the granitic rocks of various ore deposits in the study area, showing a variation trend similar to Ca. Sr decreases in the order of Fe-Cu deposit > Pb-Zn deposit > W-Mo deposit.

This difference of Sr content is displayed more clearly by its average content like Rb (Fig. 10); The average at the Geodo Fe-Cu deposit (640 ppm) is higher than those of the Pb-Zn deposits at the Yeonwha II (423 ppm), Imog (117 ppm) and Sinyemi (168 ppm), and much higher than 108 ppm at the Sangdong W-Mo deposit.

This variation trend of Sr is similar to Ca, because Sr is incorporated mostly in plagioclase or potash feldspar being admitted into Ca-minerals or captured by K-minerals. This is consistent with Ca variation in the study area, where Ca content at the Geodo Fe-Cu deposit (2.30~4.21%) is clearly higher than those of the Pb-Zn deposits at the Yeonwha II (1.19~
1.97%) and Imog (1.66~2.34%) mines.

Therefore, this variation trend of Sr in the study area coincides with that in the Gyeongsang Basin, where Sr content is 50~465ppm (294 ppm) in Fe-Cu province, which is higher than 95~320ppm (185ppm) in Pb-Zn province and 25~435ppm (157ppm) in province.

Potassium-Rubidium: There is a clear difference in K/Rb ratios between the granitic rocks of various ore deposits in the study area. Fe-Cu deposit is plotted toward K-Rb poor region under about 3% K whereas Pb-Zn and W-Mo deposits toward K-Rb rich region above the K value (Fig. 11).

According to the distribution pattern of average K/Rb ratios the ore deposits may be further devided by the K/Rb ratios. The Geodo Fe-Cu deposit falls in the central part of K/Rb ratios within the K-Rb poor region, and the Imog and Yeonwha II Pb-Zn deposits fall toward the higher limit (300) whereas the Sangdong W-Mo deposit toward the lower limit of K/Rb ratios within the K-Rb rich region.

It is interesting that the K/Rb ratios fall nearly within same upper and lower limits of 300 and 150 as that of the Gyeongsang Basin (Lee, 1984), and the distribution pattern of K/Rb ratios is also similar to that of the Gyeongsang Basin, where Fe-Cu province is plotted in the K-Rb poor region and Pb-Zn province in the K-Rb rich region. However, there is a trend that Fe-Cu and Pb-Zn deposits are plotted toward the opposite limits of K/Rb ratios from Fe-Cu province and Pb-Zn province, respectively. This indicates a possibility that productive or nonproductive granitic rocks may be distinguishable by the distribution pattern of K/Rb ratios within the limits. It is because the granitic rocks in the study area are productive, and compared mostly with nonproductive ones from the Gyeongsang Basin.

Calcium-Strontium: There is also a clear difference in Ca/Sr ratios between the granitic rocks of various deposits in the study area. Fe-Cu and Fe deposits are plotted toward Ca-Sr rich region above about 2.2% Ca whereas Pb-Zn deposits toward Ca-Sr poor region under the Ca value. From the Pb-Zn deposits W-Mo and Mn deposits can be devided by lower Ca content of approximately 0.9%, under which they are plotted in the Ca-Sr poor region (Fig. 12).

According to the distribution pattern of average Ca/Sr ratios the ore deposits may also be further devided by the Ca/Sr ratios as well as the K/Rb ratios. The Geodo Fe-Cu deposit, Sangdong W-Mo deposit and Oesangcheon Mn deposit fall toward the lower limit (40) of Ca/Sr ratios,
whereas the Dongnam Fe deposit and the Pb–Zn deposits of Imog and Sinyemi except Yeonwha II(<40) mines are scattered along the higher limit (150) of the Ca/Sr ratios.

Though the Ca/Sr ratios show a little wider limits than 150–40 of the Gyeongsang Basin (Lee, 1984), the distribution pattern of Ca/Sr ratios is also largely similar to that of the Gyeongsang Basin, where Fe–Cu province is plotted in the Ca–Sr rich region and Pb–Zn deposits toward the Ca–Sr poor region.

It is interesting that Fe–Cu and Pb–Zn deposits are plotted toward opposite limits of Ca/Sr ratios from Fe–Cu province and Pb–Zn province as in the case of K/Rb ratios, showing a possibility that productive or nonproductive granitic rocks may also be devided by the distribution pattern of Ca/Sr ratios.

Copper: There is a clear difference in Cu content between the granitic rocks of Fe–Cu deposit and other ore deposits in the study area, showing a variation trend that Cu decreases in the order of Fe–Cu deposit > Pb–Zn deposit > Mn deposit > W–Mo deposit.

This difference in Cu content is displayed clearly by the average content (Fig. 13); The average at the Geodo Fe–Cu deposit (52ppm) is higher than those of the Pb–Zn deposits at Yeonwha II (41ppm), Sinyemi (34ppm) and Imog (18ppm), and than that at Oesangcheon Mn deposit (20ppm). It is much higher in comparison to those of the Sangdong W–Mo deposit (13ppm) and Dongnam Fe deposit (12 ppm).

This variation trend of Cu is consistent with that of the Gyeongsang Basin, where Cu is slightly higher in Fe–Cu province (17ppm) than those in Pb–Zn province (13ppm) and W–Mo province (12ppm), and increase much higher at Ilkwang Cu deposit (40~220ppm).

Cu is known to be incorporated more in plagioclase, apatite and Fe–minerals than other silicate minerals, by substituting for Ca and Fe. This incorporation of Ca in rock forming minerals coincides with the fact that Ca content is generally higher at Geodo mine than at Imog, Sinyemi and Yeonwha II mines.

Lead: There is a clear difference in Pb content between the granitic rocks of Pb–Zn deposits and other ore deposits in the study area. Pb tends to decrease in the order of Pb–Zn deposit > Fe–Cu deposit > Mn deposit. However, W–Mo deposit does not show a clear relation

Fig. 13 Variation of Cu in granitic rocks.

Fig. 14 Variation of Pb in granitic rocks.
with other ore deposits.

This difference of Pb content is displayed clearly by its average content (Fig. 14); The average of Pb at the Geodo Fe–Cu deposit (30 ppm) is lower than those of the Pb–Cu deposits at Yeonwha II (53ppm), Sinyemi (37ppm) and Imog (43ppm) mines but higher in comparison to that at the Oesangcheon Mn deposit (19ppm).

This normal variation trend of Pb, however, is not consistent with that in the Gyeongsang Basin, where Pb content is rather略有 higher in Fe–Cu province (34ppm) in comparison to Pb–Zn province (27ppm). Therefore, this may indicate that Pb is not increased in the all granitic rocks in the Pb–Zn province (Lee, 1984) although it is increased in the granitic rocks of Pb–Zn deposit.

Pb is incorporated in potash feldspar, being captured or admitted by K-minerals. This coincides partially with the fact that K content is lower at the Geodo Fe–Cu deposit in comparison to those of the Pb–Zn deposits at Imog, Sinyemi and Yeonwha II mines. However, high Pb content is related mainly to its mineralization of the granitic rocks.

Zinc: There is also a clear difference in Zn content between the granitic rocks of various deposits in the study area, showing a variation trend that Zn decreases in the order of Pb–Zn deposit > Fe–Cu deposit > Mn deposit > W–Mo deposit. However, W–Mo deposit does not show a clear relation with Mn deposit as it is in the case of Pb.

This difference of Zn content is also displayed well by its average content in a similar pattern to Pb due to their mineralogical association (Fig. 15); The averages of the Pb–Zn deposits at Imog (115ppm) and Sinyemi (111ppm) mines are higher than that of the Geodo Fe–Cu deposit (72ppm), but an unusual low average (32ppm) was obtained at the Yeonwha II Pb–Zn deposit, which is much lower than that of the Oesangcheon Mn deposit (45ppm).

Although Zn content is generally higher at the Pb–Zn deposits, it is abnormally lower (22~35ppm) at the Yeonwha II Pb–Zn deposit even in comparison to the Mn or W–Mo deposits. However, a similar variation trend was also found in the Gyeongsang Basin, where Zn content is higher at Dongrae area (23~110ppm) in Fe–Cu province than at Oaneyang area (23~60ppm) and Daeyul area (30~80ppm) in Pb–Zn province (Lee, 1984). This may indicate that Zn content is not always increased in the granitic rocks related to Pb–Zn deposits.

Zn apparently enter biotite in preference to other minerals, and also enter feldspar as minute grains of sphalerite (Tauson and Kravchenko, 1956). However, high Zn content is also related to its mineralization in the Pb–Zn productive granitic rocks.

Tungsten and Molybdenum: There is a difference in W and Mo content between the granitic rocks of W–Mo deposit and other ore deposits in the study area, showing a variation trend that Mo decreases in the order of W–Mo deposit > Fe, Fe–Cu deposit > Pb–Zn, Mn deposit, but that W does not decrease regularly.
This difference of W content is displayed well by its considerably high content (11～182ppm) at the Sangdong W–Mo deposit which is higher than those of the Geodo Fe–Cu deposit (5～7ppm), Imog Pb–Zn deposit and Oesangcheon Mn deposit (< 5ppm) (Fig. 16).

In contrast to W, Mo shows less clear difference. Mo content at the Sangdong W–Mo deposit (1～34ppm) is only slightly higher in comparison to those of other deposits, and relatively high Mo content was obtained at the Dongnam Fe deposit (5～25ppm), and Geodo Fe–Cu deposit (1～15ppm) as shown in Fig. 17.

This relatively high Mo content may be related to molybdenum, which occurs in the diorite of the Fe deposit at Dongnam mine (Seo and Lee, 1983), and high Mo content was early found at the Geodo mine by geochemical exploration of heavy minerals (Lee, 1969).

Nickel and Cobalt: There is a difference in
Ni and Co content between the granitic rocks of Fe-Cu deposit and other ore deposits in the study area, showing a variation trend that Ni decreases in the order of Fe-Cu deposit > W-Mo, Pb-Zn deposit > Fe deposit, and that Co decreases in the order of Fe, Fe-Cu deposit > Pb-Zn, Mn deposit > W-Mo deposit.

This difference of Ni content is displayed better by its average content in a pattern similar to Cu due to their close association in ores (Fig. 18). The average at the Geodo Fe-Cu deposit (47ppm) is slightly higher than those of the Sangdong W-Mo deposit (39ppm) and Sinyemi Pb-Zn deposit (40ppm), and clearly higher in comparison to those of the Imog Pb-Zn deposit (14ppm), Dongnam Pb-Zn (5ppm), and Osangcheon Mn deposit (16ppm).

The difference of Co shows a similar pattern to Ni, and is well displayed by its background as well as average content (Fig. 19). However, the Fe-Cu deposit is not distinguishable from a Fe deposit by Co content. But it shows a clear difference between deposits of Fe-Cu and W-Mo.

Ni and Co are easily incorporated in ferromagnesian minerals owing to the same replacement index (0.14) as Fe and Mg. Therefore, higher Ni and Co content at the Geodo Fe-Cu and Dongnam Fe mines may be related to higher Mg content of the mines, and Cu mineralization in the case of the Dongnam mine. Cu has the same replacement index as Ni and Co.

SUMMERIZATION AND CONCLUSION
1. The mid-late Cretaceous granitic rocks in the study area are classified into granite, granodiorite, quartz monzonite and quartz monzodiorite by modal composition (Fig. 3). Normative composition (Fig. 4) coincides with it.

2. Mineralization is in close association with the types of the granitic rocks. For instance, the Pb-Zn deposit is related to granite and the Fe-Cu deposit to quartz monzodiorite respectively according to the Q-Kf-Pl diagram (Fig. 3).

3. Major elements of Na, K, Ca and Mg show distinguishable differences in content between the granitic rocks of various deposits (Fig. 5～8). Na and K are low, and Ca and Mg are high at the Fe-Cu and Fe deposits than at the Pb-Zn deposits and other deposits of Mn and W-Mo. The general variation trend between the deposits are as following:

Na : Mn deposit > Pb-Zn deposit > Fe, Fe-Cu deposit > W-Mo deposit
K : W-Mo deposit > Pb-Zn deposit > Fe-Cu deposit
Ca : Fe deposit > Fe-Cu deposit > Pb-Zn deposit > Mn, W-Mo deposit
Mg : Fe-Cu, Fe deposit > Pb-Zn, Mn, W-Mo deposit

4. Lithophile Rb and Sr tend to vary in close relation with K and Ca content respectively due to their chemical affinities. This may indicate why the Geodo Fe-Cu mine shows background low in Rb (110～171ppm) and high in Sr (525～827ppm).

5. Most granitic rocks in the study area fall nearly within the same K/Rb (300～150) and Ca/Sr (150～40) ratios limits (Fig. 11 & 12) as the Gyeongsang Basin, and show very similar variation patterns.

6. Thus, it seems to be possible to distinguish some ore deposits by the distribution pattern of the K/Rb and Ca/Sr ratios; The Fe-Cu deposit is plotted toward K-Rb poor region under about 3% K, whereas the Pb-Zn and W-Mo deposits toward K-Rb rich region above the K value. In good contrast, the Fe-Cu and Fe deposits are plotted toward Ca-Sr rich region above about 2% Ca, whereas Pb-Zn deposit toward Ca-Sr poor region under the Ca value.

7. The variation patterns of ore metals in the granitic rocks seem to be related to petrochemical characteristics and mineralization of the rocks, and each element shows relatively high
A Geochemical Study on Trace Elements in the Granitic Rocks

content in the granitic rocks of its related ore deposits (Fig. 13~19); Cu (chalcopyrite) at Fe–
Cu deposit, Pb and Zn (galena and sphalerite) at Pb–Zn deposit, W and Mo (scheelite and moly-
bdenite) at W–Mo deposit. This variation pattern is similar to that of the Gyeongsang Basin.

8. Therefore, some metallogenic difference of the study area from the Gyeongsang Basin
seems to be related mainly to chemical composition and physical-geotectonical properties of the
country rocks, which consist mainly of calcareous rocks.

ACKNOWLEDGEMENTS

The author is grateful to Prof. Sang Uk Kim, Department of Geology, Kyungpook National
University for his valuable comments on this study. He wishes to express his appreciation to
his graduate students who helped the author during field and laboratory works. The author
is greatly indebted to the Korea Science and Engineering Foundation for financial support
(1985.5~1986.4) to carry out this study.

REFERENCES

Fe–Cu bearing skarn at Keodo (in Korean). Kor.
Inst. Eng. and Resources. Report on Geoscience
and Mineral Resources, 14.
Han, K.S. (1968) Geology and ore deposits of Yeonwha
Han, K.S. (1972) Geologic report of the Second
Yeonwha mine, Kangwon province, Korea (in
Korean). J. Kor. Min. Geol., v.5, No. 4, p.211-
220.
Jin, M.S., et al. (1982) Lithogeochimistry of the
Cretaceous granitoids with relation to the metallic
ore deposits in southern Korea. J. Kor. Min. Geol.,
v.18, p.119-131.
Kim, H.J. (1986) Geochemical characteristics of Imog
granite and relation of mineralization (in Korean).
Kim, K.H. (1986) Petrology and petrochemistry of
Sangdong granite (in Korean). M.S. thesis, Kyung-
pook Nat. Univ.
Kim, K.H., et al. (1981) A mineralogical study of
the skarn minerals from the Shinmyeoni lead-zinc
167-182.
Kim, O.J. (1971) Metallogenic epochs and provinces
of South Korea. J. Geol. Soc. Kore., v.7, No. 1,
Ko, J.D. and S.J. Kim (1982) Mineralogy and genesis
of Fe–Cu and Au–Bi–Cu deposits in the Geodo
mine, Korea. J. Kor. Min. Geol., v.15, No. 4, p.
189-204.
Lee, J.Y. (1969) Geochemical study in Ogdong,
Seobyegori and Gyesangchon quadrangles. J. Geol.
Lee, J.Y. (1984) Geochemistry on major and trace
elements in the granitic rocks from the Gyeongsang
Basin in relation to mineralization. J. Kor. Min.
Geol., v.20, No. 4, p.326-344.
Lee, J.Y. and D.H. Hwang (1984) Geochemistry of the
country rocks at Eosangcheon mine. J. Kor.
Min. Geol., v.17, No.1, p.17-34.
Lee, S.M. (1972) Granites and mineralization in
Gyeongsang Basin (in Korean). Memoirs in celebra-
tion of 60th birth day of Prof. Son, C.M., p.
195-219.
tectonics to the post-late Cretaceous igneous activities
and mineralization in the southern part of South
Korea (I) (in Korean). Kor. Inst. Min. Geol., v.15,
molybdenum in scheelite of Sangdong tungsten ore
bodies. J. Kor. Min. Geol., v.13, No. 2, p.117-
127.
Moon, K.J. (1974) Study on mineral paragenesis in
Sangdong scheelite deposit. J. Kor. Min. Geol.,
Moon, K.J. (1984) Geochemistry of main gangue
minerals at the Sangdong tungsten deposit. J. Kor.
Reedman, A.J. and S.H. Um (1975) The geology of
화강암류층 미량원소와 테백산분지네 석회암지역 광화작용과의 지구화학적 관계

이계영

요약: 테백산 화강암에는 연아연, 철-동 및 중석-휘수연 등의 스카온광상이 캄브리아-오도비데기의 석회암의 계열을 주로 펼쳐져 흔히 연아연-철동-천연광석체로 이루어져 있다.

이들 광석물의 화강암류의 수반관계를 보면 철동광석체는 화강암류의 철동성광석체 또는 천연광석체로, 연아연광석체는 연아연-철동광석체, 중석-휘수연광석체는 중석-휘수연광석체의 석회암에 대응하는 것으로 보인다.

화강암류의 화학조성을 보면 연아연광석체와 관련된 화강암류는 연아연광석체와 관련된 것보다 K는 낮고 Ca는 높은 함량을 보이며 반대로 중석-휘수연광석체와 관련된 화강암류는 연아연광석체와 관련된 것보다 K는 높고 Ca는 낮은 함량을 보인다. 그러나 화강암류와 관련된 유사성은 연아연광석체와 관련된 것에 유사한 변화를 보인다.

미량원소인 철석소인 Rb와 Sr는 K와 Ca에 관련된 변화를 보이며 이와는 대조적으로 침동원소인 Cu, Pb, Zn, W 및 Mo는 이를 원소의 광석물과 관련된 화강암류에서 그 함량이 높고 기타 Ni는 총계수(0.14)가 낮은 Mg, Fe 및 Cu와 관계된 변화를 보인다.

화강암류의 평균 K/Rb 및 Ca/Sr 비가 보이는 범위는 각각 300~150 및 150~40에 속하는데 K-Rb 함량이 낮은 영역에는 철동광석체가 그리고 K-Rb 함량이 높은 영역에는 연아연 및 중석-휘수연광석체로 구성되고 대조적으로 Ca-Sr함량이 높은 영역에는 Fe-Cu 및 Fe광석체가 그리고 Ca-Sr함량이 낮은 영역에는 연아연광석체로 구성된다.

대백산 화강암류의 핵심은 화강암류층 원소가 보이는 함량변화는 광장분지네 벌어지기 화강암류의 것과 대조적으로 유사한 경향을 보이고 있으므로 본 저학회 연구의 결과는 이와 같은 지역에서 핵심하기 화강암류의 관리된 광장을 대상으로 정화학적을 실시할 때 그 화강암류의 광장과 생산성이부를 결정하는데 유용하게 활용될 수 있을 것으로 기대된다.