DC ∼ 45 GHz CPW Wideband Distributed Amplifier Using MHEMT

MHEMT를 이용한 DC ∼ 45 GHz CPW 광대역 분산 증폭기 설계 및 제작

  • Jin Jin-Man (Millimeter-wave INnovation Technology research) ;
  • Lee Bok-Hyung (Millimeter-wave INnovation Technology research) ;
  • Lim Byeong-Ok (Millimeter-wave INnovation Technology research) ;
  • An Dan (Millimeter-wave INnovation Technology research) ;
  • Lee Mun-Kyo (Millimeter-wave INnovation Technology research) ;
  • Lee Sang-Jin (Millimeter-wave INnovation Technology research) ;
  • Ko Du-Hyun (Millimeter-wave INnovation Technology research) ;
  • Beak Yong Hyun (Millimeter-wave INnovation Technology research) ;
  • Oh Jung-Hun (Millimeter-wave INnovation Technology research) ;
  • Chae Yeon-Sik (Millimeter-wave INnovation Technology research) ;
  • Park Hyung-Moo (Millimeter-wave INnovation Technology research) ;
  • Kim Sam-Dong (Millimeter-wave INnovation Technology research) ;
  • Rhee Jin-Koo (Millimeter-wave INnovation Technology research)
  • 진진만 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 이복형 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 임병옥 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 안단 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 이문교 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 이상진 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 고두현 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 백용현 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 오정훈 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 채연식 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 박형무 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 김삼동 (동국대학교 밀리미터파 신기술 연구센터) ;
  • 이진구 (동국대학교 밀리미터파 신기술 연구센터)
  • Published : 2004.12.01


In this paper, CPW wideband distributed amplifier was designed and fabricated using 0.1 $\mum$ InGaAs/InAlAs/GaAs Metamorphic HEMT(High Electron Mobility Transistor). The DC characteristics of MHEMT are 442 mA/mm of drain current density, 409 mS/mm of maximum transconductance. The current gain cut-off frequency(fT) is 140 GHz and the maximum oscillation frequency(fmax) is 447 GHz. The distributed amplifier was designed using 0.1 $\mum$ MHEMT and CPW technology. We designed the structure of CPW curve, tee and cross to analyze the discontinuity characteristics of the CPW line. The MIMIC circuit patterns were optimized electromagnetic field through momentum. The designed distributed amplifier was fabricated using our MIMIC standard process. The measured results show S21 gain of above 6 dB from DC to 45 GHz. Input reflection coefficient S11 of -10 dB, and output reflection coefficient S22 of -7 dB at 45 GHz, respectively. The chip size of the fabricated CPW distributed amplifier is 2.0 mm$\times$l.2 mm.

본 논문에서는 0.1 $\mum$ InGaAs/InAlAs/GaAs Metamorphic HEMT (High Electron Mobility Transistor)를 이용하여 DC~45 GHz 대역의 광대역 MIMIC(Millimeter-wave Monolithic Integrated Circuit) 분산 증폭기를 설계 및 제작하였다. MIMIC 증폭기의 제작을 위해 Metamorphic HEMT(MHEMT)를 설계 및 제작하였으며, 제작된 MHEMT는 드레인 전류 밀도 442 mA/mm, 최대 전달컨덕턴스(Gm)는 409 mS/mm를 얻었다. RF 특성으로 fT는 140 GHz fmax는 447 GHz의 양호한 성능을 나타내었다. 광대역 MIMIC 분산 증폭기의 설계를 위해 MHEMT의 소신호 모델과 CPW 라이브러리를 구축하였으며, 이를 이용하여 MIMIC 분산 증폭기를 설계하였다. 설계된 분산 증폭기는 본 연구에서 개발된 MHEMT MIMIC 공정을 이용하여 제작하였으며, MIMIC 분산 증폭기의 측정결과, DC ~ 45 GHz대역에서 6 dB 이상의 S21 이득을 얻었으며, 입력반사 계수는 45 GHz에서 -10 dB, 출력반사계수는 -7 dB의 특성을 나타내었다. 제작된 분산 증폭기의 칩 크기는 2.0 mm$\times$l.2 mm다.



  1. A. Leuther, A. Schwoerer, C. MassIer, H. Kudszus, S. Reinert, W. Schlechtweg, M. 'A coplanar 94 GHz low-noise amplifier MMIC using 0.07 / spl mu/m metamorphic cascode HEMTs Tessmann,' Microwave Symposium Digest, 2003 IEEE MTT-S International, vol. 3, pp. 1581 - 1584, June 2003
  2. Bok-Hyung Lee, Dong-Hoon Shin, Sam-Dang Kim, and Jin-Koo Rhee, 'High Maximum Frquency of Oscillation of $0.1{\mu}m$ off-set ${\Gamma}$-Shaped Gate InGaAs/InAIAs/GaAs Metamorphic HEMTs,' J. Korean Phys. Soc., vol. 43, no. 6, pp.427-430, Sep 2003
  3. D. An, S. C. Kim, W. S. Sul, H. J. Han, H. M. Park, and J.K. Rhee, 'High Conversion gain Millimeter-Wave Subharmonic Mixer with Cas-code 4th Harmonic Generator.' Microwave and optical technology letters. vol. 41, no. 6, pp. 490-493, June 20 2004 https://doi.org/10.1002/mop.20181
  4. Young Yun, Masaaki Nishijima, Motonari Katsuno, Hidetoshi Ishida, Katsuya Minagawa, Toshihide Nobusada, Tsuyoshi Tanaka, 'A fully integrated broad-band amplifier MMIC emplo-ying a novel chip-size package,' IEEE Transac-tions on, Micr Theory and Techniques, IEEE Transactions on, vol. 50, Issue 12, pp. 2930-2937, Dec 2002 https://doi.org/10.1109/TMTT.2002.805284
  5. M. S. Heins, C. F. Campbell, M. T. E. Mur, and J. M. Carroll. 'A GaAs MHEMT distributed amplifier with 300-GHz gain bandwidth product for 40-Gb/s optical applications,' 2002 Interna-tional IEEE MTT-S Symposium Digest, vol. 2, pp. 1061-1064, June 2002 https://doi.org/10.1109/MWSYM.2002.1011822
  6. J. W. Archer, and A. Dadello. 'Ultra-wideband, high-gain GaAs and InP-MMIC amplifiers,' 2002 International IEEE APMC Symposium Digest. vol. 1, pp. 247-250, Dec 2000 https://doi.org/10.1109/APMC.2000.925918
  7. J. B. Beyer, and S. N. Prasad, 'MESFET distributed amplifier design guideline,' IEEE Trans. on Microwave Theory and Tech, vol. 32, no. 3, pp. 268-275, March 1984 https://doi.org/10.1109/TMTT.1984.1132664
  8. Jeong, J. and Kwon, Y. 'Monolithic Distributed Amplifier With Active Control Schemes for Opti-mum Gain and Group-Delay Flatness, Band-width, and Stability,' IEEE Transactions on. Microwave Theory and Techniques, Vol. 52, Issue 4, pp. 1101 - 1110, April 2004 https://doi.org/10.1109/TMTT.2004.825659
  9. Il-Hyeong Lee, Seong-Dae Lee, and Jin-Koo Rhee, 'Studies on Air-Bridge Processes for mm-wave MMIC's Applications,' J. Korean Phys. Soc., vol. 35, no. 12, pp. S1043-S1046, 1999