Inhibitory Effect of *Cotesia plutellae* Bracovirus (CpBV) on Development of a Non-natural Host, *Spodoptera exigua*

Yonggyun Kim* and Jiwon Kim
School of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea

ABSTRACT: Polydnavirus is a symbiotic virus of some endoparasitic wasps and plays crucial roles in inhibiting immune responses and retarding development of the parasitized hosts. *Cotesia plutellae* bracovirus (CpBV) is a polydnavirus suggesting a major causative to change developmental physiology of the parasitized host. Here, we investigated whether CpBV can interrupt development of non-natural host. Beet armyworm, *Spodoptera exigua*, is used as a non-permissible host for parasitization of *C. plutellae*. Extract from the calyx region of *C. plutellae* contained CpBV, which was confirmed by immunoblotting with a polyclonal antibody raised against CpBV. One female equivalent of CpBV extract was injected into hemocoel of late 4th instar larvae of *S. exigua*. The injected larvae showed delayed larval period, decrease of body weight gain, and inability of pupal metamorphosis. These inhibitory effect of the CpBV extract was rescued by injection along with CpBV antibody, though the antibody itself did not give any effect on development of the larvae. This result clearly shows that CpBV can interrupt developmental physiology of a non-natural host for its symbiotic wasp.

KEY WORDS: *Cotesia plutellae*, Metamorphosis, Parasitization, Polydnavirus, *Spodoptera exigua*
폴리드나바이러스는 Polydnaviridae에 속하며, 일부 멤시벌리증과 내부기생봉류의 공생 바이러스로서 Ichnovirus와 Bracovirus의 두 속으로 분류되며, 이는 각각 기주 기생봉의 분류학적 계통에 따라 멤시벌리와 고치벌과 기생봉에서 분리된 바이러스들 내부다(Webb et al., 2000). Ichnovirus의 업자들은 단일 뉴클레오파시드(nucleocapsid)가 두 층의 막 구조로 둘러싸인 형태이며, 85 nm x 330 nm의 비교적 크기가 일정한 크기의 탄원형 구조를 지닌 ascovirus와 유사한 구조를 보인다(Federici et al., 1991; Bigot et al., 1997). 내막은 바이러스의 의해 침입된 세포 내에서 형성되며, 외막은 바이러스 업자의 분자구조에서 기주 세포막에서 기인한다(Stolz und Vinson, 1979). Bracovirus의 업자는 원형으로 비교적 다양한 크기를 가지며(34-40 nm x 8-150 nm), 바이러스에 의해 형성된 단일막내에 여러 개의 뉴클레오파시드를 지닌 baculovirus와 유사한 구조를 보인다(Stolz et al., 1976).

피기생자에서 폴리드나바이러스의 유전자 발현은 피기생자 면역억제 및 발병기의 효과를 통해 기생봉의 가전 기작을 도와주게 된다. 폴리드나바이러스 유전자 발현 연구가 잘 진행된 Campoletis sonorensis Ichnovirus(CsIV)의 경우 다양한 cry-motif 유전자군을 가지며, 이를 단백질 발현체들은 협주세포로 침입하여 세포내공격 재구성을 역제시켜 협주의 정상 세기관을 방해한다(Cui et al., 1997). 또한 일부 cry-motif 유전자 발현체들은 피기생자 특정 생식 단백질을 전사과정에서 발현하지 않아, 주요 영양원을 피기생자 발육보는 기생봉의 발병을 역행하는 역할을 한다(Shepherd und Webb, 1997; Kim und Webb, 2003). Bracovirus류에 있는 피기생자와 같은 협주가 유전자와 유사하게 협주 기능을 역제시키는 것으로 보고되고 있고(Asgari et al., 1997), 특별히 이들은 바이러스 백인 유전자를 가지고 있어 면역인식을 역제하는 기능을 보유하려고 하고 있다(Glatt et al., 2003).

국내에서 배추종나방(Plutella xylostella)에 기생하는 프루텔고치벌(Cotesia plutellae)에서 Bracovirus(CpBV)가 분리되었다(Bae und Kim, 2004). 고치벌에 기생된 배추종나방은 면역능력 저하, 발육 지연 및 변태 불능등의 생리적 변화를 보인다(Bae und Kim, 2004; Lee und Kim, 2004). 기존의 연구들을 살펴보면, 바이러스가 특정 기주체의 계통상에 존재하며 자연계에서는 필연적으로 기생봉의 기주의 선택하기에, 인위적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전자 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기성봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아닌 곤충류에 접촉하였을 경우, 폴리드나바이러스의 유전형 교환은 유전적으로 협주를 선택하게 되지만, 합병적으로 기생봉의 자연기주가 아니
기의 일반 사육 조건에서 고미하게 했다. 배추hamster 2량층 시기에 고미된 양수를 투입시켜 상기의 사육조
건에서 24시간 기생시켰다. 이때 배추hamster과 양양
고치혈의 비율은 3:1로 맞추었으며, 약 95% 이상의
기생율을 보였다. 동일 고치혈 집단은 3회 이상 기생
에 이용되지 않았다.

CpBV 분리 및 항체 형성
바이러스 분리는 Beckage et al. (1994)의 여과자분
리법을 변경시켰다. 프롬케고치혈 양양 난소를 적층하
고(Fig. 1A), 이를 21G 주사받는 크기가 3 CC 일회용
주사를 이용하여 홍과 배출을 반복하여 분리하였다.
이 추출액은 0.45μm공명 크리의 필터를 이용하여
바이러스 또는 이하 크리의 물질만 동과하게 했다. 추
출된 바이러스와 단백질 복합체는 15,000 g에서 원심
분리시켜 바이러스만 분리하였다. 최종 분리된 바이러
스는 세척후 젤트로 항체 제작회사(대전, 한국)로 보
내져 토끼를 대상으로 polyclonal 항체를 얻었다.

CpBV 접종 및 생리 교란 분석
한 마리 암컷의 CpBV를 염기 위해 우아후 2일된
암컷으로부터 난소를 적층하고, 5 μl의 50 mM 인산산
중식염수(pH 7.4)에서 난소만들을 염겼다(Fig. 1B). 이
후 2-3회 페렛 움직임을 통해 CpBV의 확산을 돕게
되고, 암컷 CpBV 추출액을 파람나방 4량받기(4량
받기 후 3일째)에 투입시켰다. 처리후 24시간
마다 개체별 체증을 기록하였으며, 용색지를의 유충기
간 및 용화율을 측정하였다. CpBV의 항체를 CpBV와
함께 주입시키는 처리에서는 CpBV 추출액에 1μl의
항체가 포함되었으며, 항체없는 처리에서는 같은 부피
의 정상혈청이 포함되었다.

CpBV 단백질 분석
CpBV 추출액에 해당 바이러스의 존재 유무를 증명
하기 위해 추출액을 10% SDS-PAGE(sodium dode-
cylsulfate-polyacrylamide gel electrophoresis)에서 변성
전기영동한 후, 반전조건에서 단백질을 nitrocellulose
membrane으로 옮겼다(Moon and Kim, 2003). CpBV 항
체(1,000 배 회색)와 결합시킨 후 2차 항체의 alkaline
phosphatase를 대상으로 nitro blue tetrazolium /5-bromo-
4-chloro-3-indolyl phosphate (NBT/BCIP, Sigma, USA)
로 반색 반응시켰다.

자료 분석
파람나방 발육기간 및 체중 결과 분석은 SAS 프로
그램(SAS Institute, 1989)의 one-way ANOVA 분석을
최소유의차 검정법으로 평균간 비교를 실시하였다. 용
화율 자료는 X²검정법에 의해 처리간 빈도자료 분석
을 실시하였다.

결 과
CpBV 추출
프롬케고치혈 난소만들을 표준적 비례 구조와 금속
색깔은(Fig. 1A) 이 부분이 CpBV를 함유하고 있음을

Fig. 1. Female reproductive organ of Coteia pluteaeae. (A) Calyx region where CpBV particles are located. (B) By rupturing the calyx, the
calyx lumen fluid is released to surrounding medium. Observation at 50× magnification.
기 보고된 연구 (Bae and Kim, 2004)에서 알 수 있다. 이 부위를 일어 보면 금속 색상의 물질이 주변 환경에서 음영으로 빠져 나오는 것을 관찰할 수 있었다 (Fig. 1B). 이러한 추출 음영에 CpBV가 함유되어 있는 지를 알아보기 위해 CpBV 항체를 통해 면역 반응을으로 분석하였다.

우선 이상의 구조를 진한 암컷 난소(약 2,000마리)로부터 여과법에 의해 바이러스를 추출하였고, 토끼를 대상으로 항체를 형성하였다. 형성된 항체는 분리된 CpBV 단백질 중 특이적인 두 밴드(p40와 p35)에 대해 면역반응을 보였다. 본 연구에서 난소발치를 통해 추출한 CpBV 추출용액은 여러 단백질이 SDS-PAGE 상에서 검출되었다(Fig. 2A). 이들 중 p40와 p35가 주요 단백질 밴드였고, 이 두 단백질은 CpBV 항체에 대해 특정적 항원-항체 반응을 보였다(Fig. 2B). 이러한 결과는 본 연구에서 추출한 난소발치 추출물이 CpBV를 포함하고 있음을 나타냈다.

CpBV의 곤충바이러스 유충발육 교란 효과

CpBV 추출물을 곤충바이러스 4형 발기에 혈당으로 주입시킨 결과, 용광자의 유충기간을 연장시켰다(Fig. 3). 이러한 유충 연장 효과가 CpBV에 기인되었는지 를 알기 위해 추출물에 CpBV 항체를 포함시켜 주입한 결과, CpBV 단독 효과보나 유충기간 연장 효과가 두드러져 감소되는 것을 나타냈다. 물론 항체 자신은 유충기간 변화에 아무런 효과를 보이지 못하였다.

CpBV 추출물을 곤충바이러스 유충 변화에 두드러진 영향을 주었다(Fig. 4). CpBV 처리된 곤충바이러스는 다른 세 처리구에 비해 낮은 채증 성장을 보였다(F = 201.67; df = 1, 32; P < 0.0001). 반면 CpBV와 항체를 함께 처리하면 두 처리구 또는 항체 단독 처리구와 유사한 채증기가 보였다(F = 4.03; df = 1, 32; P = 0.0531).

CpBV 추출물을 곤충바이러스 육화를 억제시켰다(Fig. 3).

![Fig. 2. Proteins of calyx fluid of Cotesia plutellae. (A) 10% SDS-PAGE (B) Immunoblotting against CpBV polyclonal antibody and color reaction of alkaline phosphatase with nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate.](image)

![Fig. 3. Effect of calyx fluid of Cotesia plutellae on larval period of Spodoptera exigua. The fluid (a female equivalent) was injected into 3 day-old 4th instar larvae of S. exigua. The larval period represents the period until pupation after the treatment. Each value consists of 10 measurements. Different letters above the standard deviation bar indicate significant difference between means at Type I error = 0.05 (LSD test). 'AB' represents a polyclonal antibody raised against CpBV.](image)

![Fig. 4. Effect of calyx fluid of Cotesia plutellae on body weight of Spodoptera exigua. The fluid (a female equivalent) was injected into 3 day-old 4th instar larvae of S. exigua. Each value consists of 10 measurements. 'AB' represents a polyclonal antibody raised against CpBV.](image)
5). 무처리구에 비해 CpBV(암컷 1마리 양) 처리구는 약 80% 용용을 감소를 보였다. 반면에 항체와 함께 처리될 경우 용용율은 무처리구와 비슷하게 유지되었으며, 항체 자체는 용용율 변동에 영향을 주지 않았다.

고 찰

남소반칙으로부터 추출된 CpBV는 파랑나방의 유충 발육을 억제시켰다. 치밀하는 파랑나방 4령 발기로 추출된 CpBV의 성능이 대단히 높았고, 이는 기생의 주요 기능 중 하나인 유전체계에서의 기능을 바이러스의 성장과 발육을 억제하였다. 이러한 결과는 바이러스의 구조와 기능에 대한 중요한 정보를 제공한다. 본 연구 결과로 보아 CpBV는 여러 가지 파랑나방의 유충기간의 발육과 패턴이 바이러스와 유충기간의 발육과 패턴이 바이러스와 유충기간의 발육과 패턴에 있어 유독한 효과가 보였다. 본 연구 결과로 보아 CpBV가 어떻게 파랑나방의 유충기간의 발육과 패턴이 바이러스와 유충기간의 발육과 패턴에 있어 유독한 효과가 보였다. 본 연구 결과로 보아 CpBV가 어떻게 파랑나방의 유충기간의 발육과 패턴이 바이러스와 유충기간의 발육과 패턴에 있어 유독한 효과가 보였다. 본 연구 결과로 보아 CpBV가 어떻게 파랑나방의 유충기간의 발육과 패턴이 바이러스와 유충기간의 발육과 패턴에 있어 유독한 효과가 보였다. 본 연구 결과로 보아 CpBV가 어떻게 파랑나방의 유충기간의 발육과 패턴이 바이러스와 유충기간의 발육과 패턴에 있어 유독한 효과가 보였다. 본 연구 결과로 보아 CpBV가 어떻게 파랑나방의 유충기간의 발육과 패턴이 바이러스와 유충기간의 발육과 패턴에 있어 유독한 효과가 보았다.

이상의 결과는 비자연기주의 과학자에 대해서 CpbV의 유충변태 양호 효과를 보였다. 이 결과는 두 가지에서 의외를 가질 수 있다. 우선 CpbV의 단독 변태 양호 효과로서 배추증살박은 물론이고 과학공학은 국내 전자 능력을 주요 난방계에 투자로서 환경에 적합한 생물적 방해인자 개발 방향으로 이용될 수 있다는 점이다. 이를 더욱 실현화시키기 위해 본 연구 실에서는 CpbV의 섭식에 따른 과학공학과 배추증살 박의 변태 양호 효과 연구가 진행되고 있다. 또 하나의 다른 의외는 배추증살박에 의해 비교적 차이가 큰 과학공학이 인위적 CpbV 유전자 발현 기기가 될 수 있다는 점이다. 접종의 용이성 및 도자학적 연구의 가능성이 높게 주어졌다. 과학공학을 대상으로 한 체내 CpbV 유전자 기능 연구가 가속화될 전망이다.

사 사

본 연구는 한국과학재단의 지역대학우수과학자 지원연구 사업으로 수행되었다. 연구 기지의 시설은 농촌진흥청의 농학계도화驿structural biology에 의해 지원되었다.

Literature Cited

Braconidae), a larval parasitoid of *Platella xylostella* (Leip-
Pennacchio, F., P. Falabella, R. Sordetti, P. Varricchio, C. Mal-
na and S.B. Vinson. 1998. Prothoracic gland inactivation in *Helio-
this virescens* (F.) (Lepidoptera: Noctuidae) larvae parasitized
by *Cardiochiles nigriceps* Viereck (Hymenoptera: Braconidae).
Cary, N.C.
defence manipulation by parasitoid wasps and the problem of
assessing host specificity. pp. 29–37. In Hymenoptera: evolu-
tion, biodiversity and biological control, eds. by A.D. Austin
and M. Dowton. CSIRO Publishing, Australia.
translation of specific growth-associated host proteins. Insect
Parasites and pathogens of insects. Volume I: Parasites, eds.
by N.E. Beckage, S.N. Thompson and B.A. Federici. Academic
Press, New York.
ivirus-like particles in the reproductive tract of female parasitoid
immune competence and host susceptibility in *Drosophila
melanogaster* parasitized by *Leptopilina boulardi* and *Asobara
Webb, B.A. 1998. Polydnavirus biology, genome structure, and
evolution. pp. 105–139. In The insect viruses, eds. by L.K. Miller
Webb, B.A., N.E. Beckage, Y. Hayakawa, P.J. Krell, B. Lanzrein,
D.B. Stoltz, M.R. Strand and M.D. Summers. 2000. Polydnavi-
rus. pp. 253–260. In Virus taxonomy, eds. by M.H.V. van
Regenmortel, C.M. Fauquet, D.H.L. Bishop, E.B. Carstens,
M.K. Estes, S.M. Lemon, J. Maniloff, M.A. Mayo, D.J.
New York.
Webb, B.A. and S. Luckhart. 1994. Evidence for an early immu-
nosuppressive role for related *Campoletis sonorensis* venom and
ovarian proteins in *Heliothis virescens*. Arch. Insect Biochem.
Physiol. 26: 147–163.

(Received for publication 2 March 2004; accepted 29 May 2004)