Toxicity of Pesticides to Minute Pirate Bug, *Orius strigicollis* Poppius (Hemiptera: Anthocoridae), a Predator of Thrips

Ki-Su Ahn*, Ki-Yeol Lee, Hyu-Jung Kang, Sung-Kyu Park and Gil-Hah Kim†
Chungbuk Agricultural Research and Extension Service, Cheongwoon, Chungbuk, 363-880, Republic of Korea
†Dept. of Plant Medicine, Chungbuk National University, San 48, Gaesindong, Cheongju, Chungbuk, 361-763, Republic of Korea

ABSTRACT : Toxicities of 51 pesticides (25 insecticides, 11 acaricides, 11 fungicides and 4 adjuvants) commonly used to control greenhouse insect, mite, and disease pests were evaluated to minute pirate bug, *Orius strigicollis* nymphs and adults at the recommended concentration. Among 25 insecticides tested, fipronil, lufenuron, acetamiprid+fipronil, α-cypermethrin+flufenoxuron and buprofezin+amitraz showed low toxicity to *O. strigicollis*. Among acaricides, acequinocyl, bifenazate, chlorfenapyr, etoxazole, fenpyroximate, flufenoxuron, milbemectin, spirotetramat and tebufenpyrad showed low toxicity to *O. strigicollis*. All fungicides and adjuvants tested were very low toxicity. It may be suggested from these results that five insecticides, nine acaricides, eleven fungicides and four adjuvants could be incorporated into the integrated thrips management system with *O. strigicollis* in greenhouses.

KEY WORDS : Minute pirate bug, *Orius strigicollis*, Pesticide, Insecticide, Acaricide, Fungicide, Adjuvant

초 록 : 병해충 방제약물로 등록된 51종의 농약(살충제 25종, 살비제 11종, 살균제 11종 그리고 농약보조제 4종)에 대한 옥플레오노린체 약용과 생존의 독성을 조사하였다. 살충제 중에서는 fipronil, lufenuron, acetamiprid+fipronil, α-cypermethrin+flufenoxuron, buprofezin+amitraz의 독성이 낮았고, 살비제 중에서는 acequinocyl, bifenazate, chlorfenapyr, etoxazole, fenpyroximate, flufenoxuron, milbemectin, spirotetramat, tebufenpyrad의 독성이 낮거나 없었다. 살균제와 농약보조제는 모두 낮은 독성을 보였다. 이상의 결과로 보아 시설 병해충의 종합관리체계에서 옥플레오노린체에 독성이 적은 약체와 옥플레오노린체를 함께 이용할 수 있을 것이다.

검색어 : 옥플레오노린체, 농약, 살충제, 살비제, 살균제, 보조제

*Corresponding author: E-mail: hyenmo01@cbares.net

--- 257 ---
최근에는(Park et al., 2003; Kim et al., 1997; Song et al., 1997).

오름에 꽃모란제는 중국이나 남방 및 일본의
수록부, 수록, 수록 그리고 중국의 남방에서
보고되었다(Yasunaga, 1993). 제주도의 잡화가 가지
요소증전에서 7만개는 꽃모란제가 유충종이나 8
월 이후에는 오름에 꽃모란제가 유충종으로 적립된다
(Song et al., 1997). 그리고 Kim et al. (2001)은
호박, 국화, 장미, 벡일홍에서는 오름에 꽃모란제가
60.0~
88.9%로 적립 한다고 보고하였다. 특히 꽃을 식히는
습성이 있고, 꽃에 서식하는 총채벌레류에 대한 포
식력이 뛰어나 총채벌레류의 생물적 피해 수단으로
이용되고 있다(Lattin, 1999). 외국에서는 오래부터
오름에 꽃모란제를 총채벌레의 생물적 피해수단으로 데
사육기술을 개발하여 상업적으로 판매하고 있으며
(Malais and Ravensberg, 1992). 최근 국내에서도 시판
되고 있다.

오름에 꽃모란제(Orius spp.) 신흥화를 위해 오름에 꽃모
란제에 대한 지독성 약제의 선발은 총채벌레, 진딧물
등 해충 발생 억제 위해 이용될 수 있다. 일본의 규
수에서는 종합적 방제의 일환으로 선택성 농약의 조
합에 의해 일반농가의 노지재배 기초포장에서 오름에
모란제로 오이총채벌레를 효과적으로 방제할 수 있었다
(Ohno et al., 1999). 이에 본 연구에서는 오름에 꽃모란
제 약충과 성충에 대하여 장미 빗방충제제제제로 동
록되어 있는 농약, 꽃물총채벌레제에 우수한 산층제
(Yu et al., 2002) 및 농약보조제의 독성을 검정하여 장
미, 오이, 가지, 밭기 등 시설작물의 병해충 방제에 기
초자료를 제공하고자 수행하였다.

재료 및 방법

실험 천적

오름에 꽃모란제(Orius. strigicollis)는 (주)세계에서
판매하는 상품을 사육실에서 캐드라忏양나방(Cadra
cautella)의 암울 먹이로 공급하면서 사육하였다. 사육
사육조건은 온도 22-25℃, 광 주기 16L:8D, 상대 습도
50-60%로 하였다.

실험 약제

본 실험에 사용된 농약은 장미에 등록된 약제와 총
채벌레에 등록된 약제를 중심으로 산체제 25종, 살미

<table>
<thead>
<tr>
<th>Table 1. List of pesticides tested for toxicity to O. strigicollis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common name</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Acricides</td>
</tr>
<tr>
<td>Abamecain</td>
</tr>
<tr>
<td>Acquinocin</td>
</tr>
<tr>
<td>Bifenazate</td>
</tr>
<tr>
<td>Chlorfenapyr</td>
</tr>
<tr>
<td>Echozole</td>
</tr>
<tr>
<td>Fenpropazine</td>
</tr>
<tr>
<td>Fenpyroximate</td>
</tr>
<tr>
<td>Fluorofoxuron</td>
</tr>
<tr>
<td>Milbenecin</td>
</tr>
<tr>
<td>Spindocilien</td>
</tr>
<tr>
<td>Telofenpyrad</td>
</tr>
<tr>
<td>Insecticides</td>
</tr>
<tr>
<td>Acephate</td>
</tr>
<tr>
<td>Acetamipride</td>
</tr>
<tr>
<td>Chlorpyrefos-methyl</td>
</tr>
<tr>
<td>Clothianidin</td>
</tr>
<tr>
<td>Emanecin benzate</td>
</tr>
<tr>
<td>Fenhexon</td>
</tr>
<tr>
<td>Fipronil</td>
</tr>
<tr>
<td>Imidaclopid</td>
</tr>
<tr>
<td>Lufenufon</td>
</tr>
<tr>
<td>Methidathion</td>
</tr>
<tr>
<td>Phenothione</td>
</tr>
<tr>
<td>Spinosad</td>
</tr>
<tr>
<td>Thioclopid</td>
</tr>
<tr>
<td>Thiennethionox</td>
</tr>
<tr>
<td>Acetamiprid + chetominpro</td>
</tr>
<tr>
<td>Acetamiprid + fipronil α-oxyméthérine + flufenoxuron</td>
</tr>
<tr>
<td>Buprofezin + amitrax</td>
</tr>
<tr>
<td>Chlorfenapyr + bifenthrin</td>
</tr>
<tr>
<td>Chlorpyrefos + bifenthrin</td>
</tr>
<tr>
<td>Chlorpyrefos + diarrilbenuron</td>
</tr>
<tr>
<td>Imidaclopid + methiocarb</td>
</tr>
<tr>
<td>Etoxazole + fenitrothion</td>
</tr>
<tr>
<td>Furfural carb + diflubenuron</td>
</tr>
<tr>
<td>Phenothione + ethionoside</td>
</tr>
<tr>
<td>Fungicides</td>
</tr>
<tr>
<td>Azoxystrobin</td>
</tr>
<tr>
<td>DBEDC</td>
</tr>
<tr>
<td>Cresoxim-methyl</td>
</tr>
<tr>
<td>Myclothianul</td>
</tr>
<tr>
<td>Nuarimol</td>
</tr>
<tr>
<td>Pochloriz</td>
</tr>
<tr>
<td>Triadimenol</td>
</tr>
<tr>
<td>Triflumizole</td>
</tr>
<tr>
<td>Triflurene</td>
</tr>
<tr>
<td>Metalaxyl + mancozeb</td>
</tr>
<tr>
<td>Osadiyl + mancozeb</td>
</tr>
</tbody>
</table>

a Active ingredient.
제 11종, 살균제 11종, 농약보조제 4종으로 모두 51종 이며, 시판되고 있는 제품을 사용하였다. 실험 약제의 일반명, 제형, 유효성분량 및 추천농도는 Table 1과 같다.

결과 및 고찰

살충제의 독성

살충제 25종에 대한 윗채꽃연초제의 발육단계별 약제독성을 조사한 결과는 Table 2와 같다. 국내 생물 적 방제기구(IOBC)의 기준에 따라 75%이상의 살충 작용을 보놓는(4등급), 50-75%를 보嘞득성(3등급), 25- 50%를 약간독성(2등급), 25%이하를 해arms(1등급)으로 하여 분류한 결과, acephate, chlorpyrifos-methyl, clothianidin, emamectin benzoate, fenitrothion, methiodathion, phenthoate, thiamethoxam, chlorpyrifos + diflubenzuron, esfenvalerate + fenitrothion, furathiocarb + diflubenzuron, phenthoate + ethofenprox은 해arms(4등급)를 나타내었고, acetamiprid, fipronil, imidacloprid, lufenuron, acetamiprid + fipronil, α-cypermethrin + flufenoxuron, buprofezin + amitraz은 해arms(1등급)를 나타내었다. 나머지 약제들은 보嘞득성(3등급)과 약간독성(2등급)을 나타내었다. Paik (2001)도 acephate, emamectin benzoate, imidacloprid, spinosad, thi-

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Nymph (%)</th>
<th>Adult (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 hr</td>
<td>72 hr</td>
</tr>
<tr>
<td>Acephate</td>
<td>36.7±5.8 de</td>
<td>83.3±5.8 abc</td>
</tr>
<tr>
<td>Acetamiprid</td>
<td>0 ±0.0</td>
<td>0 ±0.0</td>
</tr>
<tr>
<td>Chlorpyrifos-methyl</td>
<td>46.7±15.3 cd</td>
<td>96.7±5.8 ab</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>28.4±2.0 ef</td>
<td>68.5±4.6 abc</td>
</tr>
<tr>
<td>Emamectin benzoate</td>
<td>59.4±3.5 bc</td>
<td>78.4±8.8 abc</td>
</tr>
<tr>
<td>Fenithion</td>
<td>84.2±10.0 a</td>
<td>100 ±0.0 a</td>
</tr>
<tr>
<td>Fipronil</td>
<td>5.1±4.4 h</td>
<td>5.1±4.4 fg</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>0 ±0.0</td>
<td>0 ±0.0</td>
</tr>
<tr>
<td>Lufenuron</td>
<td>0 ±0.0</td>
<td>0 ±0.0</td>
</tr>
<tr>
<td>Methidathion</td>
<td>58.9±8.4 bc</td>
<td>100 ±0.0 a</td>
</tr>
<tr>
<td>Phenthoate</td>
<td>16.7±15.3 fgh</td>
<td>63.3±30.6 de</td>
</tr>
<tr>
<td>Spinosad</td>
<td>12.3±2.9 gh</td>
<td>30.6±10.8 efg</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>2.8±4.8 h</td>
<td>29.5±6.0 efg</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>73.3±5.8 ab</td>
<td>100 ±0.0 a</td>
</tr>
<tr>
<td>Acetamiprid + ethofenprox</td>
<td>6.1±5.3 h</td>
<td>21.5±9.9 fg</td>
</tr>
<tr>
<td>Acetamiprid + fipronil</td>
<td>0 ±0.0</td>
<td>0 ±0.0</td>
</tr>
<tr>
<td>α-cypermethrin + flufenox.</td>
<td>0 ±0.0</td>
<td>0 ±0.0</td>
</tr>
<tr>
<td>Buprofezin + amitraz</td>
<td>3.3±5.8 h</td>
<td>3.3±5.8 fg</td>
</tr>
<tr>
<td>Chlorfenapyr + bifenthrin</td>
<td>10.0±10.0 h</td>
<td>35.0±8.7 def</td>
</tr>
<tr>
<td>Chlorpyrifos + bifenthrin</td>
<td>0 ±0.0</td>
<td>0 ±0.0</td>
</tr>
<tr>
<td>Chlorpyrifos + diflubenzuron</td>
<td>56.7±15.3 c</td>
<td>73.5±11.0 ab</td>
</tr>
<tr>
<td>Imidacloprid + methiocarb</td>
<td>5.1±8.9 h</td>
<td>68.9±7.2 abc</td>
</tr>
<tr>
<td>Esfenvalerate + fenitrothion</td>
<td>9.4±9.1 h</td>
<td>62.1±22.9 cde</td>
</tr>
<tr>
<td>Furathiocarb + diflubenzuron</td>
<td>25.7±5.8 fgh</td>
<td>83.3±11.6abc</td>
</tr>
<tr>
<td>Phenthoate + Ethofenprox</td>
<td>60.9±11.4 bc</td>
<td>100 ±0.0 a</td>
</tr>
</tbody>
</table>

*a Sample size, n=30.
*b Means followed by the same letters are not significantly different (P=0.05; Tukey’s studentized range test[SAS Institute, 1991]).
amethoxam은 총대 이상에서 70% 이상의 독성을 보였다고 보고하며, 본 실험과 비슷한 결과를 보였으나, imidacloprid와 spinosad는 독성이 높다고 보고하여, 본 실험과 차이를 보였다. acetamiprid와 imidaclorpid는 레노이터너이드계통에 침투성이 높아 식물체의 전기구간이 긴 것으로 알려져 있고 (Horowitz et al., 1988), 온실로봇노린제는 총체수분유지를 위해 식물체를 증증하기 때문에 본 실험에서 acetamiprid, imidacloprid는 해가 없는 1등급으로 분류되었으나 제갈토가 필요할 것으로 판단된다. 또한 Lee (1997)는 acephate가 애포노린제 알에 영향을 주어, 6%의 낮은 부작용을 보였고, 성장은 61.5%의 사망률을 보고하여, 본 실험과 비슷한 결과를 얻었다.

총체벌레의 치사량과 관련하여 식물체에서 이 전에 효과가 있던 살충제에 대해 감수성이 크게 낮아졌으며 (Immaraju et al., 1992; Brodsgaard, 1994; Zhao et al., 1995), 최근 국내 시험제에서 총체벌레의 낮은 범해효과가 보고되고 있어 (Cho et al., 1999; Yu et al., 2002), 약체방법 으로 총체벌레의 만족할 만한 방제가 점점 어려워지고 있다. 따라서 총체벌레의 방제로 전략과 전략에 안정된 방제을 상호 보완적으로 사용하는 것이 방제효과를 높이는 방제기 술로 바람직할 것으로 생각한다. Song et al. (2002)은 하우스가지에서 애포노린제를 이용한 총체벌레 방제가 가능하다고 하였고, 온실로봇노린제 하우스 고주에서 발생하는 총체벌레 고주 정치 조기에 주당 2 마리기 전용으로 3일 간 3회 방사하면 생유기간 동안 4회 약제를 실험한 것과 비슷한 총체벌레 방제 효과를 얻을 수 있다고 하였다 (Song et al., 2001). 기자나 고주에서 총체벌레의 방제에는 약제 방제가 필요 없거나 살포횟수를 줄일 수 있음을 보여주고 있다.

살씨의 독성

11종 살씨의 온실로봇노린제 성충의 사망률이 26.7%로 가장 높았고, acequinocyl, bifenazate, etoxazole, flufenoxuron 등이 약제처리 48시간 후에 사망률이 6.7% 미만으로 살씨에 대한 온실로봇노린제에는 영향이 없는 것으로 보고하였다. Lee(1997)는 동물로봇노린제에 대한 약제처리에서, fenpropatrin은 낮은 부작용과 80.7%의 사망률을 보고하여, 본 실험과 같은 결과를 보였다. 따라서 시험제에서 총체벌레를 방제하기 위하여 전략을 적용할 경우, 온실로봇노린제에 해가 없는 살씨(acequinocyl, bifenazate, chlorfenapyr, etoxazole, fenpyroximate, flufenoxuron, milbemectin, spirodiclofen, tebufenpyrad)를 선택하면 응애와 총체 벌레를 효과적으로 방제할 수 있을 것으로 판단된다.

살씨에 대한 독성

Table 3. Mortality of acaricides against nymphs and adult of O. strigicollis under the laboratory condition

<table>
<thead>
<tr>
<th>Acaricide</th>
<th>Nymph*</th>
<th>Adult*</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 hr</td>
<td>72 hr</td>
<td>24 hr</td>
</tr>
<tr>
<td>Abamectin</td>
<td>10.0 ± 10.0</td>
<td>26.7 ± 5.8</td>
</tr>
<tr>
<td>Acequinocyl</td>
<td>3.3 ± 5.8 ab</td>
<td>3.3 ± 5.8 cd</td>
</tr>
<tr>
<td>Bifenazate</td>
<td>3.3 ± 5.8 ab</td>
<td>6.7 ± 5.8 cd</td>
</tr>
<tr>
<td>Chlorfenapyr</td>
<td>0 b</td>
<td>8.3 ± 8.2 cd</td>
</tr>
<tr>
<td>Etoxazole</td>
<td>0 b</td>
<td>0 d</td>
</tr>
<tr>
<td>Fenpropatrin</td>
<td>3.3 ± 5.8 ab</td>
<td>40.0 ± 10.0 a</td>
</tr>
<tr>
<td>Fenpyroximate</td>
<td>0 b</td>
<td>0 d</td>
</tr>
<tr>
<td>Flufenoxuron</td>
<td>0 b</td>
<td>0 d</td>
</tr>
<tr>
<td>Milbemectin</td>
<td>0 b</td>
<td>0 d</td>
</tr>
<tr>
<td>Spirodiclofen</td>
<td>0 b</td>
<td>0 d</td>
</tr>
<tr>
<td>Tebufenpyrad</td>
<td>0 b</td>
<td>12.4 ± 5.0 c</td>
</tr>
</tbody>
</table>

* Sample size, n = 30.
* Means followed by the same letters are not significantly different (P = 0.05: Tukey’s studentized range test [SAS Institute, 1991]).

<table>
<thead>
<tr>
<th>Acaricide</th>
<th>Nymph*</th>
<th>Adult*</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 hr</td>
<td>72 hr</td>
<td>24 hr</td>
</tr>
<tr>
<td>Abamectin</td>
<td>10.0 ± 10.0</td>
<td>26.7 ± 5.8</td>
</tr>
<tr>
<td>Acequinocyl</td>
<td>3.3 ± 5.8 ab</td>
<td>3.3 ± 5.8 cd</td>
</tr>
<tr>
<td>Bifenazate</td>
<td>3.3 ± 5.8 ab</td>
<td>6.7 ± 5.8 cd</td>
</tr>
<tr>
<td>Chlorfenapyr</td>
<td>0 b</td>
<td>8.3 ± 8.2 cd</td>
</tr>
<tr>
<td>Etoxazole</td>
<td>0 b</td>
<td>0 d</td>
</tr>
<tr>
<td>Fenpropatrin</td>
<td>3.3 ± 5.8 ab</td>
<td>40.0 ± 10.0 a</td>
</tr>
<tr>
<td>Fenpyroximate</td>
<td>0 b</td>
<td>0 d</td>
</tr>
<tr>
<td>Flufenoxuron</td>
<td>0 b</td>
<td>0 d</td>
</tr>
<tr>
<td>Milbemectin</td>
<td>0 b</td>
<td>0 d</td>
</tr>
<tr>
<td>Spirodiclofen</td>
<td>0 b</td>
<td>0 d</td>
</tr>
<tr>
<td>Tebufenpyrad</td>
<td>0 b</td>
<td>12.4 ± 5.0 c</td>
</tr>
</tbody>
</table>

* Sample size, n = 30.
* Means followed by the same letters are not significantly different (P = 0.05: Tukey’s studentized range test [SAS Institute, 1991]).

단독한 결과는 Table 4에 있다. 실험에서의 일부 온실로봇노린제 약물은 대체로 살씨에게 독성을 보였으나, Paik(2001)의 결과와는 다르게, 온실로봇노린제에 대한 살씨의 독성이 상대적으로 높아졌다. 건강한 사막으로 연료에 대책을 마련하고, 온실로봇노린제에 영향이 주지 않을 것으로 판단된다.
Table 4. Mortality of fungicides against nymphs and adult of *O. strigicollos* under

<table>
<thead>
<tr>
<th>Acaricide</th>
<th>Nympha (%)</th>
<th>Adult (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 hr</td>
<td>72 hr</td>
</tr>
<tr>
<td>Aoxystrobin</td>
<td>0.8</td>
<td>2.8±4.8a</td>
</tr>
<tr>
<td>DBEDC</td>
<td>0 a</td>
<td>0 a</td>
</tr>
<tr>
<td>Kresoxim-methyl</td>
<td>0 a</td>
<td>0 a</td>
</tr>
<tr>
<td>Myclobutanil</td>
<td>0 a</td>
<td>0 a</td>
</tr>
<tr>
<td>Nuarimol</td>
<td>0 a</td>
<td>3.0±5.5a</td>
</tr>
<tr>
<td>Prochloraz</td>
<td>0 a</td>
<td>0 a</td>
</tr>
<tr>
<td>Triadimefon</td>
<td>6.1±5.4a</td>
<td>2.8±4.8a</td>
</tr>
<tr>
<td>Triflumizole</td>
<td>0 a</td>
<td>3.3±5.8a</td>
</tr>
<tr>
<td>Triforine</td>
<td>0 a</td>
<td>6.7±5.8a</td>
</tr>
<tr>
<td>Metalaxyl+mancozeb</td>
<td>0 a</td>
<td>0 a</td>
</tr>
<tr>
<td>Oxadixyl+mancozeb</td>
<td>6.1±10.5a</td>
<td>9.1±9.1a</td>
</tr>
</tbody>
</table>

* Sample size, n = 30.
* Means followed by the same letters are not significantly different (P = 0.05; Tukey’s studentized range test [SAS Institute, 1991]).

Table 5. Mortality of adjuvants against nymphs and adult of *O. strigicollos* under the laboratory condition

<table>
<thead>
<tr>
<th>Acaricide</th>
<th>Nymph (%)</th>
<th>Adult (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 hr</td>
<td>72 hr</td>
</tr>
<tr>
<td>Cover</td>
<td>0 a</td>
<td>0 a</td>
</tr>
<tr>
<td>Siloxane</td>
<td>0 a</td>
<td>0 a</td>
</tr>
<tr>
<td>Spreader</td>
<td>0 a</td>
<td>0 a</td>
</tr>
<tr>
<td>Spreader-sticker</td>
<td>2.8±4.8a</td>
<td>5.8±5.0a</td>
</tr>
</tbody>
</table>

* Sample size, n = 30.
* Means followed by the same letters are not significantly different (P = 0.05; Tukey’s studentized range test [SAS Institute, 1991]).

농약보조제의 독성

농약보조제 4종에 대한 오랜처럼노른제의 독성을 조사한 결과(Table 5), 실질적용 모두 독성이 없었다. 시험방해에 의한 이물질 발생시 대부분의 농가에서 농약보조제를 첨가하여 농약을 살포하기 때문에 약물을 첨가적용 시에 발생할 뿐에는 농약보조제에 대한 독성여부를 반드시 검토할 필요가 있다(Ahn et al., 2004).

그러나 오랜처럼노른제는 실질적용 농약보조제에서 독성이 없기 때문에, cover, siloxane, spreader, spreader-sticker는 안전하게 이용할 수 있을 것으로 생각된다. 이상의 결과를 종합해보면, 천적인 오랜처럼노른제 약물과 성층에 안전한 약물은 실질적용 중에서 살충제 5종(fipronil, lufenuron, acetamiprid+fipronil, α-cypermethrin+flufenoxuron, buprofezin+amitraz), 살충제 9종(acequinocyl, bifencozate, chlorfenapyr, etoxa-

사 사

본 연구는 농림부 농림기술센터의 지원으로 수행한 결과이다.

Literature Cited

(Received for publication 9 August 2004; accepted 10 September 2004)