Design of Bandgap Reference Circuit Operating at Liquid Nitrogen Temperature for Infrared Detector
Youn-Kyu Kim*

Abstract
A stable reference voltage generator is necessary to the infrared image signal readout circuit (ROIC) to improve noise characteristics in comparison with signals originated from infrared devices, that is, to gain good images. In this study, bandgap reference circuit operating at cryogenic temperature of 77K for Infrared image ROIC (readout integrated circuit) was propose. Most of bandgap reference circuits which are presented so far operate at room temperature, and they are not suitable for infrared image ROIC operating at liquid nitrogen temperature, 77K. To design bandgap reference circuit operating at cryogenic temperature, the parameter characteristics of used devices as temperature change are seen, and then bandgap reference circuit is proposed with considering such characteristics. It demonstrates practical use possibility through taking measurements and estimations.

초 록
적외선 소자로부터 생성되는 신호와의 비교에 의한 점음 특성의 향상, 즉 좋은 영상을 얻기 위해서 적외선 영상신호 취득회로 (ROIC) 에서는 안정적인 기준 전압원이 필요하다. 본 논문은 극저온 77K에서 동작하는 적외선 영상신호 취득회로 (readout integrated circuit)를 위한 밴드-gap 기준회로에 대해서 제안하고 있다. 기존에 발표된 대부분의 밴드-gap 기준회로는 실온에서 동작하는 것이며, 액체질소 온도 77K에서 동작하는 적외선 영상 ROIC에는 적합하지 않다. 본 논문에서는 극저온에서 동작하는 밴드-gap 기준회로 설계를 위하여, 온도변화에 따른 사용되는 소자들의 parameter에 대한 특성을 살펴본 후, 이러한 특성을 고려하여 밴드-gap 기준 회로를 제안하였으며 이것은 그 실용 가능성을 입증하고 있다.

키워드 : 밴드-gap 기준회로 (bandgap reference circuit), 액체 질소 온도 (liquid nitrogen temperature), 온도계수 (temperature coefficient), 적외선 영상신호 취득회로 (Infrared ROIC)

* 지상수신관제그룹/ykkim@kari.re.kr
1. 서 론

오늘날 적외선 카메라는 많은 영역에서 요구되어진다. 예를 들어 천문관측, 해양 관측, 기상학, 지질, 특성 관찰, 군사적인 목적, 산불 감시, 비파괴 검사 등의 목적으로 많이 이용되고 있다. 군사적인 목적에서는 미사일의 운도 영상을 감지해서 요격하는 Seeker로서 요격이 이루어지고 있고, 지상에서 군사 작전시 야간 탐사에 많이 이용되고 있다.

특히 항공우주 기술에서 가장 많이 이용되고 있는데 이것은 인공위성에 탑재 되어서 여러 분야에 이용되고 있다. 먼저 항해 적외선 시각들은 해양 및 호수의 운도를 원점으로 결정할 수 있어서 즉 이론은 기후 예측을 수행할 수 있다. 이것은 음력과 같은 기후 이상을 감지할 수 있고 지구 운동의 이해하는데 중요한 자료가 되고 있다. 그러나 아프리카 극지방의 방산의 이동을 모니터링 할 수 있으며 이론에 대한 정보도 얻을 수 있다. 다음으로 기상학에서 날씨를 연구하고 예측하는 중요한 자료가 된다. 지구의 날씨를 모니터링하고 주요한 구름의 분포, 운도 그리고 이동을 조사해서 태풍과 같은 재해 예측 할 수 있다. 그리고 지구 밖에 우주에서 천문학적인 현상을 이해하는데 많은 자료를 제공하고 있으며 요즘은 산불감시와 같은 곳에도 이용된다.

이러한 적외선 검출기는 0.75μm ~1mm의 파장을 갖는 전자파의 복사에 의해 이뤄지는 전기적인 신호를 감지하여 영상 신호를 얻는 영상센서이다. 이러한 적외선 검출기는 크게 두 부분으로 이루어져 있다. 하나는 입력되는 영상신호에 의해 여기 떠 있는 전자에 의한 도전율 변화나 광전기적 변화를 가지는 적외선 감지 소자배열(Infrared detector array)이다. 그리고 나머지 하나는 감지 소자에서 발생한 전기적 신호를 읽어내는 신호취득회로(readout integrated circuit)이다. 이 두 부분은 각각 다른 종류의 기판에서 제작되어 hybrid bonding을 통하여 시스템을 이룬다. 그리고 이것은 적외선이 입력되지 않을 때에 는 열적으로 생성되는 carrier들의 영향을 줄이기 위해서 극저온까지 낮기할 수 있는 냉각 장치를 필요로 하고 있다. 이러한 냉각장치는 냉각수의 액체 질소를 이용한 Joule-Thomson 냉각기가 많이 사용되고 있다.

그리고, 적외선 영상 신호 취득회로(ROIC) 중에서 일반적으로 사용되는 전압 전압 방식의 ROIC 동작도를 그림 1에 나타내었다. 이 그림에서 동작 원리는 적외선 감지 소자가 적외선을 받으면 이에 해당하는 전자량이 생성될 것이고 이러한 전자량에 해당하는 charge가 처음 C_int 에 저장되어 있던 charge(이것은 V_{ref}와 같은 값이다.)에서 빠져나가게 되면서 C_{int}의 전압은 내려간다. 결과적으로 C_{int}의 전압과 V_{ref} 차이에 의해 영상 신호를 내는 것이다. 따라서 여기에서 가장 중요한 것은 V_{ref}가 정확하고 안정적인 전압을 유지해야 한다.

![그림 1. 신호처리 회로(ROIC)의 개념도](image-url)

일반적으로 이러한 V_{ref}는 외부에서 직접 전원을 가해주고 방식을 쓰는 경우가 많다. 하지만 이러한 방법은 noise coupling 문제를 일으킬 수 있으므로 전압 기준회로를 이용하여 V_{ref}를 만드는 것이 좋은 방법일 것이다.

앞에서 언급했듯이, 적외선 검출기는 열감을 감소 위하여 액체 질소를 이용한 Joule-Thomson 극저온 냉각기를 사용하여 77K의 환경에서 동작한다. Joule-Thomson 냉각기는 일반적으로 적외선 탈색기에 많이 사용되는 냉각기인데, 다음 그림 2와 같은 냉각 특성을 가진다. 그림 2는 시간에 따라 질소 가스의 압력 변화와 시간에 따른 냉각기의 운도 센서감도의 변화는 제공된다. 여기에서 볼 수 있듯이, 센서감도가 가장 일정치 않고 변화가 있는 것을 알 수 있다. 이것을 운도의 판정에서 보면 0.4K ~ 2K의 운도 변화가 냉각기에서 생기는 것이다. 만약 앞의 ROIC에서 운도에 대해서 고려하지 않은 기준회로를 이용한다면 앞의 운도 변화에 대해서 약 수백 μV에서 수μV의 출력전압 변화가 생긴다.
2. 본 론

2.1 극저온에서의 parameter의 특성

반드컵 기준 회로의 기본 개념은 온의 온도 계수를 가지는 전압과 양의 온도 계수를 가지는 전압에 온도의 온도 계수를 상쇄할 수 있는 이득을 곱해 주자

\[
\frac{\partial V_{\text{out}}}{\partial T} = \frac{\partial V_D}{\partial T} + n \frac{\partial V_T}{\partial T}
\]

\[
= \frac{\partial V_D}{\partial T} + \frac{n k}{q} = 0
\]

회로를 설계하기 앞서 우선적으로 77K에 대한 온도 계수 값을 예측할 수 있다. 이 값을 구하기 위해서 다음과 같이 pn 다이오드 전압, \(V_0\)
에 대한 전류식 식(2)을 살펴보자.

\[
I_D = I_s \exp \left(\frac{q V_D}{kT} \right)
\]

여기에서 \(I_s\)는 다음 식(3)[1]과 같이 표현된다.

\[
I_s = B T^{2.5} \exp \left(- \frac{E_g}{kT} \right)
\]

여기에서 B는 상수로 해당한다. 여기에서 온도의 계수는 pn 다이오드의 온도 계수를 갖는다. 이는 다음 식(4)[1]으로 표현할 수 있다.
\[
\frac{\partial V_D}{\partial T} = \frac{V_T}{T} \ln \frac{I_D}{I_S} - 2.5 \frac{V_T}{T} - \frac{E_g V_T}{kT^2} \\
= \frac{V_D - 2.5 V_T - E_g/q}{T}
\]

\[(4) \]

여기서 T는 절대온도를 나타내며, \(V_T \)는 열전 압, \(E_g \)는 Si의 energy bandgap을 나타낸다.

그러서 위의 식 (4)를 이용하여 \(V_D \)의 온도계수의 값을 계산해보았다. 그리고 실제로 pn 다이오드를 측정하여 온도계수의 값을 실험하였다. 이것을 표 1에 나타내었다.

표 1. 온도계수의 계산과 측정값

<table>
<thead>
<tr>
<th>계산</th>
<th>측정</th>
</tr>
</thead>
<tbody>
<tr>
<td>실온</td>
<td>-1.3~1.5mV/K</td>
</tr>
<tr>
<td>77K</td>
<td>-2.3mV/K</td>
</tr>
</tbody>
</table>

여기에서 볼 수 있듯이 실온과 77K에서는 온도계수값이 다르다는 것을 알 수 있으며 이것은 결국 실온에서 작용된 밴드간 기준 최록을 극저온에서 사용할 수 없으며, 극저온에 적합한 밴드간 기준 최록이 필요하다. 결과적으로 77K에서 pn 다이오드 전량의 온도계수값은 약 -2.1~2.4mV/K의 값을 가진다. 그리고 양의 온도계수 k/q는 온도에 따라서 일정한 값을 가지므로 앞으로의 온도계수를 상세히 시킬 수 있는 이득을 얻으면 안정적인 \(V_{out} \)을 얻을 수 있다.

이러한 parameter의 특성뿐만 아니라 mobility, threshold 전압(\(V_T \)) 등의 특성도 온도의 함수이므로 이에 대한 고려도 필요하다. Mobility와 \(V_T \)는 온도가 감소함에 따라 증가하는 경향을 보여준다. 보통 실온에서 비해 극저온 77K에서는 mobility가 약 6배가량 크고, \(V_T \)는 약 0.3V증가를 보일 것이다.[3] 그로서 전류 레벨이 약 2배 증가하는 경향성을 보인다. 또한 다이오드 양극에 걸리는 전압도 온도계수값이 기저온에 비해 약 0.3V 증가될 것이다. 이렇듯이 실온에서 날리는 극저온에서는 이러한 것들의 고려를 가지고 회로 설계를 하였다.

2.2. 제안된 bandgapreferencecircuit.

앞의 parameter특성을 고려하여 제안된 bandgap reference circuit을 그림 3에 나타내었다. 먼저 이 회로의 동작을 본다면 두 다이오드 D1, D2로 흐르는 전류 차이에 의해서 differential 구조로 되어 있는 \(M_3, M_4 \)의 gate 전압의 차이만큼 전류가 \(M_5 \)을 통해서 \(I_3 \)가 흐른다. 전 전류는 current mirroring에 의해서 \(M_5 \)를 통해서 \(G_{13} \)가 흐른다. \(M_1 \)과 \(M_2 \)가 \(M_3 \)과 \(M_4 \)의 W/L가 A배 만큼 차이가 나므로 \(M_1 \)과 \(M_2 \)의 gate전압의 전압차이는 \(\sqrt{A} G \Delta V_D \)가 된다.[4] \(V_{out} \)은 \(M_1 \)의 gate이고, \(V_{D1} \)과 \(V_{D2} \)의 전류의 크기 10배만큼 차이가 나게 설계하여 이것은 식 (5)로 표현된다.

\[
V_{out} = V_{g2} + \sqrt{A} G \Delta V_D \\
= V_{D2} + \sqrt{A} G \frac{kT}{q} ln 10
\]

\[(5) \]

여기에서 볼 수 있듯이 온도계수를 가지는 \(V_{D2} \)와 끗부분의 양의 온도계수와 이득의 곱으로 정점적인 bandgap reference의 식으로 이루어져있다.

위의 식은 MOS 전류식을 이용하여 분명하게 확인할 수 있다. \(M_1 \sim M_5 \)를 통해서 흐르는 전류를 \(I_1 \sim I_4 \)라고 하자. \(I_1 \sim I_4 \)의 전류식과 \(G_{12}=G_{1}, G_{13}=G_{2} \)을 이용하여 다음 식(6),(7)이 된다.

\[
GA \left(V_{gs3} - V_{th3} \right) = \left(V_{gs1} - V_{th1} \right)^2
\]

\[
GA \left(V_{gs4} - V_{th4} \right) = \left(V_{gs2} - V_{th2} \right)^2
\]

\[(6),(7) \]

식 (6),(7)과 \(V_{in}=V_{D2}, V_{th}=V_{D3} \)를 이용하여 다음 식(8)을 얻는다.

\[
V_{gs1} - V_{gs2} = \sqrt{A} \left(V_{gs3} - V_{gs4} \right)
\]

\[(8) \]

식(8)은 앞의 식 (5)가 되는 것을 알 수 있다.

그리고 이 회로의 특성은 외부에서 이득을 조절할 수 있게 하여서 제한된 회로의 예상외의 parameter변화와 공정상의 오차 등에서도 생기는 문제를 해결
할 수 있게 할 수 있다. 이 회로에서는 MOS size A의 값을 control하여 이득을 없이로 바꿀 수 있게 하였다. 그래서 M_5, M_6는 다음과 같이 inverter를 이용한 구조로 이루어져 있다. 그림 4는 M_4에 대한 구조를 보여주고 있다. 물론 M_5도 MOS의 W/L의 비만 다른 뿐 M_6과 같은 구조로 이루어져 있다. 이 그림에서 숫자들은 M_2의 W/L size비에 대한 배수에 해당하는 값을 나타낸다. control 방법은 V_1~V_5를 외부에서 ground 또는 V_DD를 가해해서 inverter를 동작시키면 M_3, M_4의 W/L size비가 결정된다. 여기서 보듯이 A의 값은 1~21 변화를 줄 수 있다. 앞에서 보았듯이 V_0out에서 대이득 전압 V_0B는 77K에서 ~2 ~2.4mV/K의 온도의 온도 계수 값을 가지게 되고, 양의 온도 계수에 해당하는 (5)식의 \(\sqrt{AG^kT^q} \) 에서 G=8로 정하고 A의 값을 약 15~18로 정도로 변화시키면 약 2~2.4mV/K의 양의 온도 계수를 얻게 되고 이것은 온도 계수의 값을 상쇄할 수 있으므로 77K에서 V_0out이 안정된 전압원이 될 것이라고 예상할 수 있다.

그림 3. 제안된 bandgap reference circuit

그림 4. Inverter를 이용한 M4의 구조

그림 5. 온도에 따른 측정된 output 전압

2.3 측정 결과

이 회로는 보다 안정적인 Stirling 방열기를 사용하여 측정하였다. 온도는 60K~110K 만큼의 범위에서 측정하였으며, 측정 정비의 resolution은 1uV를 가
진다. 측정 결과는 그림 5에 나타내었다. A=18,16일 때의 결과를 보여주고 있으며, A=18일 때는 측정 온도 60K~100K 범위에서 \(V_{out} \)이 1.0419±0.0012V의 변화가 있었고, A=16일 때는 측정온도 60K~110K범위에서 \(V_{out} \)이 1.0396±0.0015V의 변화가 있었다. 그리고 온도범위 77±3K에서 A=18일 때는 \(V_{out} \)의 온도 계수가 약 20μV/K이하, A=16일 때는 40μV/K이하의 결과를 얻었다. 이 결과에서 볼 수 있도록 앞에서 예상했던 A의 값에서 77K 근처의 온도 범위에서 \(V_{out} \)의 온도 계수가 가장 작은값을 얻을 수 있었다. 그리고 앞의 범위가 문제였던 최대 2K의 온도 변화에 약 40μV(A=18일때)이하의 값을 이 생기므로 이것은 적외선 검출기의 잡음이 300μV에 비해서 충분히 작아서 방각기 시스템이 불안정한 곳에 충분히 대처할 수 있는 결과를 얻었다.

온도변화에 따른 \(V_{out} \)의 잡음과 적외선 감지소자의 잡음 300μV를 고려해서 전체 잡음에 비해서 \(V_{out} \)의 잡음이 5% 이내로 충분히 수용할 만한 결과 값을 얻었다.

3. 결론

본 논문은 극저온에서의 온도 변화에도 안정적인 전압을 얻을 수 있는 bandgap reference 회로를 제안하였다. 공정상의 오차와 제온에서의 parameter의 변화 등에 따른 문제점을 보완하고자 외부에서 이득을 조절할 수 있는 구조를 제안했으며 이러한 회로를 통해서 적외선 검출기의 Joule Thomson 영 각기의 온도 변화에 따른 신호 취득회로의 문제점을 보완할 수 있는 결과를 얻었다. 즉 \(V_{out} \)의 온도계수 가 20μV/K의 작은값을 얻었다. 또한, 극저온에서 밴드갭 기초회로의 설계와 적외선 검출기의 적응을 처음 시도된 것으로 앞으로 극저온공학에서 동작되는 모든 회로에도 이 회로를 용용해서 사용할 수 있을 것이다. 그리고 앞으로 인공위성의 탑재체인 적외선 카메라에서도 이와 같은 회로를 적용하여 절 좋은 영상을 얻을 것이다.

참고 문헌