Occurrence of Root-knot Nematodes in Sweet Potato Fields and Resistance Screening of Sweet Potato Cultivars

Dong-Ro Choi*, Jae-Kook Lee, Byeong-Yong Park¹ and Mi-Nam Chung²

Applied Entomology Division, National Institute of Agricultural Science & Technology, RDA, Suwon 441-707
¹Ginseng & Medicinal Crop Division, National Institute of Crop Science, RDA, Suwon 441-857
²Evaluation and Coordination office, General Service Division, Rural Development Administration, Suwon 441-707, Korea

ABSTRACT: Total of 36 sweet potato field soils were sampled to survey the occurrence of the root-knot nematodes (RKN). The 61% of sweet potato fields in Haenam, 40% in Iksan and 31% in Yeju were infested with RKN, respectively. Average population density of RKN was 324 juveniles per 300 g soil. The resistance screening of sweet potato cultivars against RKN was carried out by using clay pots in a greenhouse. Average temperature under ground 10 cm in pot was 21.5°C during the test. There was no difference in number of egg sacs among different inoculation methods, however the egg-inoculation method was easy for treatment and had stable for results. The multiplication ratio of Meloidogyne incognita differed from 6.3 (Jeungmi) to 63.2 times (Yumii) by sweet potato cultivars. There were no cultivars showing resistance to M. incognita, but Jinmi, Jeungmi and Borami had resistance to M. arenaria, M. hapla and M. javanica.

KEY WORDS: Meloidogyne incognita, Occurrence, Resistance, screening, Sweet potato

초 록: 고구마 주산단지를 중심으로 36개 포장에서 뿌리흑선충 발생 상황을 조사한 결과 선충의 검출률이 해당 61%, 익산 40%, 여주 31%이었으며, 평균밀도는 토양 300 g당 324마리였다. 고구마 뿌리흑선충 저항성 검정체험 환경은 환경에서 환경을 이용하여 수행되었으며 시험기간 동안 환경내 지하 10 cm의 평균온도는 21.5°C이었다. 흉리흑선충의 접종 방법별 시험에서 접종 방법에 따른 유의적인 차이는 인정되지 않았으나, 유종을 접종하는 것이 보다 얽고 결과가 안정적이었다. 고구마 평균 중에 따라 뿌리흑선충의 증감이 다르게 나타났으며(3.7~63.2배), 저항성 평균보다 감수성 평균에서 난생 당의 수가 많았다. 주요 뿌리흑선충 4종에 대한 국내품종의 저항성 조사에서 고구마 뿌리 흉선충에 저항성을 나타내는 품종은 없었으나, 진미, 증미, 브리미는 당근뿌리흑선충, 자바뿌리흑선충 및 당근뿌리흑선충에 저항성을 나타내었다.

검색어: 고구마, 뿌리흑선충, 발생상황, 저항성검정, 접종방법

서 론: 우리나라는 여름철 온도가 높고 습기가 많아 비교적

북쪽까지 고구마 재배가 가능하던 것처럼 9월 20일 이후로 내리는 지방까지 고구마를 안전하게 재배할 수 있다. 현재 고구마 재배면적은 약 12,000 ha로 1985년도에

*Corresponding author. E-mail: dchoi@rda.go.kr
부리혹선충의 저항성 검정 체계

농업과학기술원 농업해충과 산층연구실에서 유지·보존해충 고구마부리혹선충(Meloidogyne incognita), 당콩부리혹선충(M.arenaria), 당근부리혹선충(M. hapla) 등 4종을 토마토(영양)에 중식하여 이용하였다. 부리혹선충의 알 분리는 난란이 붉어있는 토마토부위를 2~3cm로 자른 후 Sodium Hypochlorite Solution 0.5% 용액에 담겨 한 후 3분간 세차해 혼들러서 젖린을 용해시킨 후 500매씩 세로 절리서 농축시키고, 필요할 농도로 희석하여 사용하였다. 유충은 Baermann법으로 얻은 부화시켜 사용하였으며, 감염토양은 토마토 플레이트를 화분에 심고, 선충을 접종하여 1세대 중식 후 토양 속에 남아있는 부리혹선충 유충을 분리하여 밀도를 파악한 후 면균토양으로 밀도를 조절하여 이용하였다. 시험에 사용된 토양은 원예용무농상토(4+4분 Julius Polder의 무게비율로 혼합하여 병균 후 사용하였으며, 화분은 토양 500g이 들어가는 직경 10cm 고리자를 사용하였으며, 화분은 1000ml로 음식에서 수확하였다. 부리혹선충 접종방법은 선충 접종은 포기감 약 3000개, 유충은 1000 마리로 하였고, 감염토양의 선충 밀도는 토양 100g당 200마리가 되도록 조절하였다. 선충접종은 알과 유충은 고구마 알복수를 정확하고 5일후에 식지하였고, 감염토양은 선충밀도 조절 후 직접 고구마알마을 이식하였다. 시험에 이용한 11개의 고구마 품종은 작물과학원 목표시험장을로부터 고구마 실험소 분모를 받아서 이용하였다.

부리혹선충의 난란조사는 선충 접종 후 고구마 푸리에 난류가 형성된 푸리를 깨끗하게 뿌어서 Phloxin B 0.015% 용액에 15분간 첨가하여 약색한 후 난류 수량을 계수하였다. 저항성 판정은 G. Fasciolus (1985) 가 제시한 방법으로 고구마 푸리에 형성된 부리혹선충의 난류 수가 갱성 품종과 비교하여 10% 이상인면 저항성(R), 11~25% 사이이면 중간 저항성(MR), 26% 이상이면 감수성으로 판정하였다.

culture 30% 줄어드는 결과인지만 최근에 재배면적 중가되고 있는 추세이며, 과거에는 제주도, 전남 및 경남 해안 지역에서 전문가공용으로 주중용 품종이 대부분 재배되어 왔지만, 낭부 도서지방과 해안지역에 재배된 이유는 고구마와 타 작물에 비해 강한 바람에도 안전하게 재배할 수 있기 때문이다. 현재 고구마는 경기도, 전남북, 경남 4개도에서 전국제배면적의 76%를 차지하고 있다. 고구마재배는 특근한 지역에서 연작되어졌으므로 토양 병해충 및 선충의 피해가 큰 것으로 예상되지만 지금까지 정밀한 조사가 이루어진 바가 없다. 국내에 병해충학적 분석이 농작물에 피해가 심한 식물기생선충은 부리혹선충으로 고구마부리혹선충(p. 3) 고구마부리혹선충(Meloidogyne incognita), 당콩부리혹선충(M. arenaria), 당근부리혹선충(M. hapla) 등 3종으로 알려져 있다(Choi & Choo, 1978). 부리혹선충의 발생방법은 야채류, 태양열, 온천, 첫수, 저항성품종 이용 등 여러 가지 방법이 있지만 방해법의 선택은 포장 조건, 경제성 등을 고려하여 결정하게 되는데 고구마는 대면적의 노력에서 재배되는 특산품을 상당수 생산할 수 있는 일반적인 방해법은 적용하기 어렵다. 또한 일본에서는 고구마부리혹선충에 대해서 저항성인 농법 2형, 사마리 허리 등 20종이 육성하고 보급하고 있지만 국내에서는 이에 대한 연구가 매우 미흡하다.

본 연구는 국내 고구마 주요 재배지역을 중심으로 부리혹선충의 발생상황을 파악하고, 부리혹선충 저항성 검정 체계를 확립하여 고구마의 부리혹선충 저항성 품종을 육성을 할 수 있는 기반을 구축하고자 수행하였다.

재료 및 방법

고구마 재배전송 선충 조사

국내 주요 고구마 주산지인 전남 해남, 전북 익산, 경기 여주지역의 36개 포장에서 고구마 수확기인 9월에고구마 당이꾸리와 주변의 토양을 1개 포장 10개소에서 1kg의 토양을 채취하여 미농용지에 담아서 실험실로 운반하고 10℃ 냉장고에 보관하면서 선충을 분리하였다. 선충 분리는 1kg의 토양 시료를 끓여서 식후 300g을 위하여 Modified Baermann법으로 선충을 분리하였고, 선충 고정은 TAF액을 80℃로 가열하여 이용하였다. 선충 조사는 50배 희석한미생에서 선충 속별로 밀도를 조사하였다. 고구마 당이꾸리의 부리혹선충 피해는 칼로 고구마를 절단하여 기생여부를 확인하였다.
Table 1. Occurrence of root-knot nematode at sweet potato field by locality

<table>
<thead>
<tr>
<th>Locality</th>
<th>No. of field</th>
<th>Rate of detection (%)</th>
<th>Nematodes/soil 300 g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>Jeonnam Haenam</td>
<td>13</td>
<td>61</td>
<td>487</td>
</tr>
<tr>
<td>Jeonbuk Iksan</td>
<td>10</td>
<td>40</td>
<td>426</td>
</tr>
<tr>
<td>Gyeonggi Yeoju</td>
<td>13</td>
<td>31</td>
<td>60</td>
</tr>
<tr>
<td>Total & mean</td>
<td>36</td>
<td>47.3</td>
<td>324</td>
</tr>
</tbody>
</table>

※ Soil sampling date : 2001. 9. 25~28

Fig. 1. Symptoms of sweet potato (Yulmi) infected by Meloidogyne incognita

Fig. 2. Parasitism of Meloidogyne incognita in sweet potato (Yulmi)
Table 2. Comparison of differential inoculation methods for the screening of sweet potato cultivars against *Meloidogyne incognita*[^1]

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Eggs inoculation (2,000/plant)</th>
<th>Larva inoculation (1,000/plant)</th>
<th>Infected soil (1,000/plant)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of egg mass/plant</td>
<td>Rating</td>
<td>No. of egg mass/plant</td>
<td>Rating</td>
</tr>
<tr>
<td>Jeungmi</td>
<td>68</td>
<td>MR</td>
<td>68</td>
<td>MR</td>
</tr>
<tr>
<td>Sincheonmi</td>
<td>140</td>
<td>S</td>
<td>131</td>
<td>S</td>
</tr>
<tr>
<td>Seonmi</td>
<td>208</td>
<td>S</td>
<td>122</td>
<td>S</td>
</tr>
<tr>
<td>Yulmi</td>
<td>282</td>
<td>S</td>
<td>312</td>
<td>S</td>
</tr>
<tr>
<td>Regal</td>
<td>1</td>
<td>R</td>
<td>0</td>
<td>R</td>
</tr>
</tbody>
</table>

[^1]: Experiments were conducted in a d-12-cm clay pot in a greenhouse with five replications.

[^2]: Resistance rating was determined by number of egg masses per plant. R: <10% of a susceptible cultivar (Yulmi), MR: 11-25%, S: >26% (G. Fassulliotis, 1985).

Table 3. Multiplication of *M. incognita* to five sweet potato cultivars in greenhouse[^1]

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>No. of egg mass/plant</th>
<th>Rating[^2]</th>
<th>No. of egg/egg mass</th>
<th>Total/plant</th>
<th>Reproduction rate (No. of egg/2,000[^3])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jinnmi</td>
<td>35</td>
<td>MR</td>
<td>211</td>
<td>7,385</td>
<td>3.7</td>
</tr>
<tr>
<td>Jeungmi</td>
<td>68</td>
<td>MR</td>
<td>184</td>
<td>12,512</td>
<td>6.3</td>
</tr>
<tr>
<td>Sincheonmi</td>
<td>140</td>
<td>S</td>
<td>409</td>
<td>57,260</td>
<td>28.6</td>
</tr>
<tr>
<td>Seonmi</td>
<td>208</td>
<td>S</td>
<td>501</td>
<td>104,208</td>
<td>52.1</td>
</tr>
<tr>
<td>Yulmi</td>
<td>282</td>
<td>S</td>
<td>448</td>
<td>126,336</td>
<td>63.2</td>
</tr>
</tbody>
</table>

[^1]: Experiments were conducted in a d-12-cm clay pot in a greenhouse with five replications.

[^2]: Resistance rating was determined by number of egg masses per plant. R: <10% of a susceptible cultivar (Yulmi), MR: 11-25%, S: >26% (G. Fassulliotis, 1985).

[^3]: The nematodes were inoculated with 2,000 eggs per plant.
Table 4. Resistance rating of four root-knot nematodes species in 11 sweet potato cultivars in greenhouse

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>M. incognita</th>
<th>M. arenaria</th>
<th>M. javanica</th>
<th>M. hapla</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Egg mass</td>
<td>Rating</td>
<td>Egg mass</td>
<td>Rating</td>
</tr>
<tr>
<td>Jimni</td>
<td>35</td>
<td>MR</td>
<td>1</td>
<td>R</td>
</tr>
<tr>
<td>Jeungmi</td>
<td>52</td>
<td>R</td>
<td>8</td>
<td>R</td>
</tr>
<tr>
<td>Borami</td>
<td>75</td>
<td>S</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>Hongmi</td>
<td>121</td>
<td>S</td>
<td>47</td>
<td>MR</td>
</tr>
<tr>
<td>Jinzongmi</td>
<td>145</td>
<td>S</td>
<td>111</td>
<td>S</td>
</tr>
<tr>
<td>Sinyulmi</td>
<td>178</td>
<td>S</td>
<td>188</td>
<td>S</td>
</tr>
<tr>
<td>Sincheomni</td>
<td>182</td>
<td>S</td>
<td>162</td>
<td>S</td>
</tr>
<tr>
<td>Geomi</td>
<td>233</td>
<td>S</td>
<td>355</td>
<td>S</td>
</tr>
<tr>
<td>Seomi</td>
<td>234</td>
<td>S</td>
<td>68</td>
<td>MR</td>
</tr>
<tr>
<td>Sinseomi</td>
<td>467</td>
<td>S</td>
<td>202</td>
<td>S</td>
</tr>
<tr>
<td>Yulmi</td>
<td>553</td>
<td>S</td>
<td>724</td>
<td>S</td>
</tr>
</tbody>
</table>

Experiments were conducted in a d-12-cm clay pot in a greenhouse with five replications. Soil tested were infested with 1,000 larva per 500 g. Resistance rating was determined by number of egg masses per plant. R: <10% of a susceptible cultivar (Yulmi), MR: 11-25%, S: >26% (G. Fassoulitis, 1985).

Kondo (1972)에 의하면 고구마뿌리혹선충의 기생도가 고구마종종별로 다르게 나타났으며 피해 및 뿌리혹저수도 다르다고 하였다. 그리고 뿌리혹선충의 기생도가 높은 품종은 난방의 밀도가 높았으며 기생도가 낮은 품종은 난방의 수가 적어 안정적인 수용도가 낮다고 하였다. 또한 포장에서 뿌리혹선충에 감수성을 판촉 14호와 저항성인 농림 5호를 재배한 결과 토양의 선충 밀도는 감수성포장에서 매우 높았고 저항성 포장에서는 거의 선충을 찾아 볼 수 없음을 정도로 낮았다고 하였다. 국내 품종 중에서도 품종과 선종 종류에 따라 뿌리혹선충의 기생물이 현저하게 다르다는 구간이 확인되었다.

결국으로 고구마 육종가들이 뿌리혹선충 저항성을 검정하는 데는 선종 전문가가 고구마저항성 품종 육종 사업에 참여하여 저항성을 평가하는 것이 바람직하다고 생각된다. 앞으로 뿌리혹선충이 고구마에게 어느 정도 피해를 주지지 않아 피해해석에 대한 연구도 앞으로 추진되어야 할 것이다.

Literature Cited

(Received for publication 19 July 2006; accepted 10 August 2006)