• Ahmadi, M. Faghih (Department of Mathematics, College of Sciences, Shiraz University) ;
  • Hedayatian, K. (Department of Mathematics, College of Sciences, Shiraz University)
  • 투고 : 2007.10.25
  • 심사 : 2008.01.07
  • 발행 : 2008.03.25


A bounded linear operator T on a complex separable Hilbert space H is called a two-isometry, if $T^{*2}T^2-2T^*T+1=0$. In this paper it is shown that every two-isometry is not supercyclic. This generalizes a result due to Ansari and Bourdon.



  1. J. Agler and M. Stankus, m-isometric transformation of Hilbert space I, Integr. Equ. Oper. Theory, 21(1995), 383-429.
  2. S. I. Ansari and P. S. Bourdon, Some properties of cyclic operators, Acta Sci. Math. (Szeged) 63 (1997), 195-207.
  3. N. S. Feldman, N-supercyclic operators, Studia Math. 151 (2002), 141-159.
  4. N. S. Feldman, The dynamics of cohyponormal operators, Trends in Banach spaces and operator theory (Proc. Conf., Memphis, TN, 2001), 71-85, Amer. Math. Soc., Providence, RI, 2003.
  5. K. G. Grosse-Erdmann, Recent developments in hypercyclicity, Rev. R. Acad. Cien. Serie A. Mat. Vol. 79 (2), 2003, 273-289.
  6. K. Hedayatian, On cyclicity in the space $H^p({\beta})$, Taiwanese Journal of Mathematics, Vol. 8, No.3, (2004) 429-442.
  7. F. Leon Saavedra, the positive supercyclicity theorem, Extracta Mathematicae, Vol. 19 Num. 1, (2004), 145-149.
  8. A. Peris and L. Saldivia, Syndetically hypercyclic operators, Integr. Equ. Oper. Theory, Vol. 51, No. 2 (2005) 275-281.
  9. S. Richter, A representation theorem for cyclic analytic two-isometries, Trans. Amer. Math. Soc. 328 (1991), 325-349.

피인용 문헌

  1. Powers of A-m-Isometric Operators and Their Supercyclicity vol.39, pp.3, 2016,