CHARACTERIZATION OF CELLULAR AUTOMATA WITH RULE 102 AND PERIODIC BOUNDARY CONDITION

  • Kim, Jae-Gyeom (Department of Mathematics Kyungsung University)
  • Received : 2011.07.19
  • Accepted : 2011.11.18
  • Published : 2011.12.30

Abstract

In this note, we will characterize powers of characteristic matrices of uniform cellular automata configured with rule 102 and periodic boundary condition.

Keywords

Acknowledgement

Supported by : Kyungsung University

References

  1. P. P. Chaudhuri, D. R. Chowdhury, S. Nandi and S. Chattopadhyay, Additive celullar automata theory and applications, Vol.1, IEEE Computer Society Press, Los Alamitos, California, 1997.
  2. Z. Cinkir, H. Akin and I. Siap, Reversivility of 1D cellular automata with peri- odic boundary over finite fields$\mathbb{Z}_p$, J. Stat. Phys. 143 (2011), no. 4, 807-823. https://doi.org/10.1007/s10955-011-0202-2
  3. S. Das and B. K. Sikdar, Characterization of 1-d periodic boundary reversible CA, Electron. Notes Theor. Comput. Sci. 252 (2009), 205-227. https://doi.org/10.1016/j.entcs.2009.09.022
  4. J. G. Kim, A characterization of cycle lengths of cellular automata, J. Chungcheong Math. Soc. 23 (2010), no. 4, 785-791.
  5. J. G. Kim, On state transition diagrams of cellular automata, East Asian Math. J. 25 (2009), no. 4, 517-525.
  6. J. von Neumann, The theory of self-reproducing automata, A. W. Burks ed., Univ. of Illinois Press, Univ. and London, 1966.
  7. N. Nobe and F. Yura, On reversibility of cellular automata with periodic boundary condition, J. Phys. A: Math. Gen. 37 (2004), 5789-5804. https://doi.org/10.1088/0305-4470/37/22/006
  8. W. Pries, A. Thanailakis and H. C. Card, Group properties of cellular automata and VLSI applications, IEEE Trans. Computers C-35 (1986), no. 12, 1013- 1024. https://doi.org/10.1109/TC.1986.1676709
  9. S. Wolfram,Cellular automata and complexity-Collected Papers, Addison Wesley, 1994.