APPLICATION OF \tilde{g}_α-CLOSED SETS

YOUNG KEY KIM*, R. DEVI**, AND A. SELVAKUMAR***

Abstract. The notion of \tilde{g}_α – closed sets in a topological space introduced by R. Devi and A. Selvakumar [2]. In this paper, we introduce the concept of \tilde{g}_α-US spaces by utilizing \tilde{g}_α – open sets and study the basic properties of this space.

1. Introduction

In 1967, A. Wilansky [7] introduced and studied the concept of US-spaces. Also, the notion of \tilde{g}_α-closed sets of a topological space are discussed by R. Devi et. al. [2]. The concept of slightly continuous functions are introduced and investigated by R. C. Jain [4].

The aim of this paper is to introduce the notion of slightly \tilde{g}_α-continuous functions and \tilde{g}_α-US spaces. Further, the basic properties of slightly \tilde{g}_α-continuous functions are derived. Also we studied the concepts of \tilde{g}_α-spaces, \tilde{g}_α-convergence, sequentially \tilde{g}_α-compactness, sequentially \tilde{g}_α-continuity and sequentially \tilde{g}_α-sub-continuity.

Throughout the present paper, X and Y are always topological spaces. Let A be a subset of X. We denote the interior and the closure of a set A by $\text{int}(A)$ and $\text{cl}(A)$ respectively.

A subset A of a space X is said to be α-open [5] if $A \subseteq \text{int} (\text{cl} (\text{int} (A)))$. A subset A of a space X is said to be \tilde{g}_α-closed [2] if $\text{acl} (A) \subseteq U$ whenever $A \subseteq U$ and U is α-open. The complement of a \tilde{g}_α-closed set is said to be \tilde{g}_α-open. The intersection of all \tilde{g}_α-closed sets of X containing A is called \tilde{g}_α-closure of A and is denoted by $\tilde{g}\text{acl}(A)$. The union of all \tilde{g}_α-open sets of X contained in A is called \tilde{g}_α-interior of A and is denoted by $\tilde{g}\text{int}(A)$.

Received June 18, 2010; Revised November 09, 2010; Accepted December 13, 2010.

2010 Mathematics Subject Classification: Primary 54A08.
Key words and phrases: \tilde{g}_α – open set, \tilde{g}_α – US space.
Correspondence should be addressed to Young Key Kim, ykkim@mju.ac.kr.
The family of all α-open (resp. $\tilde{g}\alpha$-open, $\tilde{g}\alpha$-closed, clopen, $\tilde{g}\alpha$-clopen) set of X is denoted by $\alpha\textit{O}(X)$ (resp. $\tilde{g}\alpha\textit{O}(X)$, $\tilde{g}\alpha\textit{C}(X)$, $\textit{CO}(X)$, $\tilde{g}\alpha\textit{CO}(X)$).

Definition 1.1. ([2]) A function $f : X \to Y$ is $\tilde{g}\alpha$-continuous if $f^{-1}(V)$ is $\tilde{g}\alpha$-open set in X for each open set V of Y.

Definition 1.2. ([4]) A function $f : X \to Y$ is slightly-continuous if $f^{-1}(V)$ is open set in X for each clopen set V of Y.

2. $\tilde{g}\alpha$-US spaces

Definition 2.1. A sequence $\{x_n\}$ in a space X, $\tilde{g}\alpha$-converges to a point $x \in X$ if $\{x_n\}$ is eventually in every $\tilde{g}\alpha$-open set containing x.

Definition 2.2. A space X is said to be $\tilde{g}\alpha$-US if every sequence in X, $\tilde{g}\alpha$-converges to a point of X.

Definition 2.3. A space X is said to be

(i) $\tilde{g}\alpha$-T_1 if each pair of distinct points x and y in X there exists a $\tilde{g}\alpha$-open set U in X such that $x \in U$ and $y \notin U$ and a $\tilde{g}\alpha$-open set V in X such that $y \in V$ and $x \notin V$.

(ii) $\tilde{g}\alpha$-T_2 if for each pair of distinct points x and y in X there exist $\tilde{g}\alpha$-open sets U and V such that $U \cap V = \phi$ and $x \in U, y \in V$.

Theorem 2.4. Every $\tilde{g}\alpha$-US-space is $\tilde{g}\alpha$-T_1.

Proof. Let X be a $\tilde{g}\alpha$-US-space and x, y be two distinct points of X. Consider the sequence $\{x_n\}$, where $x_n = x$ for any $n \in N$. Clearly $\{x_n\}$ $\tilde{g}\alpha$-converges to x. Since $x \neq y$ and X is $\tilde{g}\alpha$-US, $\{x_n\}$ does not $\tilde{g}\alpha$-converges to y, i.e., there exists a $\tilde{g}\alpha$-open set U containing x but not y. Similarly, we obtain a $\tilde{g}\alpha$-open set V containing y but not x. Thus, X is $\tilde{g}\alpha$-T_1.

Theorem 2.5. Every $\tilde{g}\alpha$-T_2 space is $\tilde{g}\alpha$-US.

Proof. Let X be a $\tilde{g}\alpha$-T_2 space and $\{x_n\}$ a sequence in X. Assume that $\{x_n\}$ $\tilde{g}\alpha$-converges to two distinct points x and y. Then $\{x_n\}$ is eventually in every $\tilde{g}\alpha$-T_2 then $\{x_n\}$ is eventually in two disjoint $\tilde{g}\alpha$-open sets. This is a contradiction. Therefore, X is $\tilde{g}\alpha$-US.

Definition 2.6. A subset A of a space X is said to be

(i) sequentially $\tilde{g}\alpha$-closed if every sequence in A $\tilde{g}\alpha$-converges to a point in A.

(ii) sequentially $\tilde{g}αO$-compact if every sequence in A has a subsequence which $\tilde{g}α$-converges to a point in A.

Theorem 2.7. A space is $\tilde{g}α-US$ if and only if the diagonal set Δ is a sequentially $\tilde{g}α$-closed subset of the product space $X \times X$.

Proof. Suppose that X is a $\tilde{g}α-US$ space and $\{(x_n, x_n)\}$ is a sequence in the diagonal Δ. It follows that $\{x_n\}$ is a sequence in X. Since X is $\tilde{g}α-US$, the sequence $\{(x_n, x_n)\}$ $\tilde{g}α$-converges to (x, x) which clearly belongs to Δ. Therefore, Δ is a sequentially $\tilde{g}α$-closed subset of $X \times X$. Conversely, suppose that the diagonal Δ is a sequentially $\tilde{g}α$-closed subset of $X \times X$. Assume that a sequence $\{x_n\}$ is $\tilde{g}α$-converging to x and y. Then it follows that $\{(x_n, x_n)\}$ $\tilde{g}α$-converges to (x, y). By hypothesis, since Δ is sequentially $\tilde{g}α$-closed, we have $(x, y) \in \Delta$. Thus $x = y$. Therefore, X is $\tilde{g}α-US$. □

Theorem 2.8. If a space X is $\tilde{g}α-US$ and a subset M of X is sequentially $\tilde{G}αO$-compact, then M is sequentially $\tilde{g}α$-closed.

Proof. Assume that $\{x_n\}$ is any sequence in M which $\tilde{g}α$-converges to a point $x \in X$. Since M is sequentially $\tilde{G}αO$-compact, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ $\tilde{g}α$-converges to $m \in M$. Since X is $\tilde{g}α-US$, we have $x = m$. This shows that M is sequentially $\tilde{g}α$-closed. □

Theorem 2.9. The product space of an arbitrary family of $\tilde{g}α-US$ topological spaces is a $\tilde{g}α-US$ topological space.

Proof. Let $\{X_\lambda : \lambda \in \Delta\}$ be a family of $\tilde{g}α-US$ topological spaces with the index set Δ. The product space of $\{X_\lambda : \lambda \in \Delta\}$ is denoted by $\prod X_\lambda$. Let $\{x_n(\lambda)\}$ be a sequence in $\prod X_\lambda$. Suppose that $\{x_n(\lambda)\}$ $\tilde{g}α$-converges to two distinct points x and y in $\prod X_\lambda$. Then there exists a $\lambda_0 \in \Delta$ such that $x(\lambda_0) \neq y(\lambda_0)$. Then $\{x_n(\lambda_0)\}$ is a sequence in X_{λ_0}. Let V_{λ_0} be any $\tilde{g}α$-open in X_{λ_0} containing $x(\lambda_0)$. Then $V = V_{\lambda_0} \times \prod_{\lambda \neq \lambda_0} X_\lambda$ is a $\tilde{g}α$-open set of $\prod X_\lambda$ containing x. Therefore, $\{x_n(\lambda)\}$ is eventually in V. Thus $\{x_n(\lambda_0)\}$ is eventually in V_{λ_0} and it $\tilde{g}α$-converges to $x(\lambda_0)$. Similarly, the sequence $\{x_n(\lambda_0)\}$ $\tilde{g}α$-converges to $y(\lambda_0)$. This is a contradiction as X_{λ_0} is a $\tilde{g}α-US$ space. Therefore, the product space $\prod X_\lambda$ is $\tilde{g}α-US$. □

3. Sequentially $\tilde{G}αO$-compact preserving functions

Definition 3.1. A function $f : X \to Y$ is said to be
(i) Sequentially \(\tilde{g}_\alpha \)-continuous at \(x \in X \) if the sequence \(\{ f(x_n) \} \) \(\tilde{g}_\alpha \)-converges to \(f(x) \) whenever a sequence \(\{ x_n \} \) \(\tilde{g}_\alpha \)-converges to \(x \). If \(f \) is sequentially \(\tilde{g}_\alpha \)-continuous at each \(x \in X \), then it is said to be sequentially \(\tilde{g}_\alpha \)-continuous.

(ii) Sequentially nearly \(\tilde{g}_\alpha \)-continuous, if for each sequence \(\{ x_n \} \) in \(X \) that \(\tilde{g}_\alpha \)-converges to \(x \in X \), there exists subsequence \(\{ x_{n_k} \} \) of \(\{ x_n \} \) such that the sequence \(\{ f(x_{n_k}) \} \) \(\tilde{g}_\alpha \)-converges to \(f(x) \).

(iii) Sequentially sub \(\tilde{g}_\alpha \)-continuous if for each point \(x \in X \) and each sequence \(\{ x_n \} \) in \(X \) \(\tilde{g}_\alpha \)-converging to \(x \), there exists a subsequence \(\{ x_{n_k} \} \) of \(\{ x_n \} \) and a point \(y \in Y \) such that the sequence \(\{ f(x_{n_k}) \} \) \(\tilde{g}_\alpha \)-converges to \(y \).

(iv) Sequentially \(\tilde{G}_\alpha O \)-compact preserving if the image \(f(M) \) of every sequentially \(\tilde{G}_\alpha O \)-compact set \(M \) of \(X \) is a sequentially \(\tilde{G}_\alpha O \)-compact subset of \(Y \).

Theorem 3.2. Let \(f_1 : X \rightarrow Y \) and \(f_2 : X \rightarrow Y \) be two sequentially \(\tilde{g}_\alpha \)-continuous functions. If \(Y \) is \(\tilde{g}_\alpha \)-US, then the set \(E = \{ x \in X : f_1(x) = f_2(x) \} \) is sequentially \(\tilde{g}_\alpha \)-closed.

Proof. Suppose that \(Y \) is \(\tilde{g}_\alpha \)-US and \(\{ x_n \} \) is any sequence in \(E \) that \(f_1 \)-converges to \(x \in X \). Since \(f_1 \) and \(f_2 \) are sequentially \(\tilde{g}_\alpha \)-continuous functions, the sequence \(\{ f_1(x_n) \} \) (respectively, \(\{ f_2(x_n) \} \)) converges to \(f_1(x) \) (respectively, \(f_2(x) \)). Since \(x_n \in E \) for each \(n \in N \) and \(Y \) is \(\tilde{g}_\alpha \)-US, \(f_1(x) = f_2(x) \) and hence \(x \in E \). This shows that \(E \) is sequentially \(\tilde{g}_\alpha \)-closed. \(\square \)

Lemma 3.3. Every function \(f : X \rightarrow Y \) is sequentially sub \(\tilde{g}_\alpha \)-continuous if \(Y \) is sequentially \(\tilde{G}_\alpha O \)-compact.

Proof. Let \(\{ x_n \} \) be a sequence in \(X \) that \(\tilde{g}_\alpha \)-converges to \(x \in X \). It follows that \(\{ f(x_n) \} \) is a sequence in \(Y \). Since \(Y \) is sequentially \(\tilde{G}_\alpha O \)-compact, there exists a subsequence \(\{ f(x_{n_k}) \} \) of \(\{ f(x_n) \} \) that \(\tilde{g}_\alpha \)-converges to a point \(y \in Y \). Therefore \(f : X \rightarrow Y \) is sequentially sub \(\tilde{g}_\alpha \)-continuous. \(\square \)

Theorem 3.4. Every sequentially nearly \(\tilde{g}_\alpha \)-continuous function is sequentially \(\tilde{G}_\alpha O \)-compact preserving.

Proof. Let \(f : X \rightarrow Y \) be a sequentially nearly \(\tilde{g}_\alpha \)-continuous function and \(M \) be any sequentially \(\tilde{G}_\alpha O \)-compact subset of \(X \). We will show that \(f(M) \) is a sequentially \(\tilde{G}_\alpha O \)-compact subset of \(Y \). So, assume that \(\{ y_n \} \) is any sequence in \(f(M) \). Then for each \(n \in N \), there exists a point \(x_n \in M \) such that \(f(x_n) = y_n \). Now \(M \) is sequentially \(\tilde{G}_\alpha O \)-compact, so
there exists a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) that \(\tilde{\gamma}a \)-converges to a point \(x \in M \). Since \(f \) is sequentially nearly \(\tilde{\gamma}a \)-continuous, there exist a subsequence \(\{x_{n_k}(i)\} \) of \(\{x_{n_k}\} \) such that \(\{f(x_{n_k}(i))\} \) \(\tilde{\gamma}a \)-converges to \(f(x) \). Therefore, there exists a subsequence \(\{y_{n_k}(i)\} \) of \(\{y_{n_k}\} \) that \(\tilde{\gamma}a \)-converges to \(f(x) \). This implies that \(f(M) \) is a sequentially \(\tilde{\gamma}aO \)-compact set of \(Y \).

Theorem 3.5. Every sequentially \(\tilde{\gamma}aO \)-compact preserving function is sequentially sub \(\tilde{\gamma}a \)-continuous.

Proof. Suppose that \(f : X \to Y \) is a sequentially \(\tilde{\gamma}aO \)-compact preserving function. Let \(x \) be any point of \(X \) and \(\{x_n\} \) a sequence that \(\tilde{\gamma}a \)-converges to \(x \). We denote the set \(\{x_n : n \in N\} \) by \(A \) and put \(M = A \cup \{x\} \). Since \(\{x_n\} \) \(\tilde{\gamma}a \)-converges to \(x \), \(M \) is sequentially \(\tilde{\gamma}aO \)-compact. By hypothesis, \(f \) is sequentially \(\tilde{\gamma}aO \)-compact subset of \(Y \). Now in \(f(M) \) there exists a subsequence \(\{f(x_{n_k})\} \) of \(\{f(x_n)\} \) that \(\tilde{\gamma}a \)-converges to a point \(y \in f(M) \). This implies that \(f \) sequentially sub \(\tilde{\gamma}a \)-continuous.

Theorem 3.6. A function \(f : X \to Y \) is sequentially \(\tilde{\gamma}aO \)-compact preserving if and only if \(f/M : M \to f(M) \) is sequentially sub \(\tilde{\gamma}a \)-continuous for each sequentially \(\tilde{\gamma}aO \)-compact set \(M \) of \(X \).

Proof.

Necessity: Suppose that \(f : X \to Y \) is a sequentially \(\tilde{\gamma}aO \)-compact preserving function. Then \(f(M) \) is sequentially \(\tilde{\gamma}aO \)-compact in \(Y \) for each sequentially \(\tilde{\gamma}aO \)-compact subset \(M \) of \(X \). Therefore, by Theorem 3.5 \(f/M : M \to f(M) \) is sequentially sub \(\tilde{\gamma}a \)-continuous.

Sufficiency: Let \(M \) be any sequentially \(\tilde{\gamma}aO \)-compact set of \(X \). We will show that \(f(M) \) is sequentially \(\tilde{\gamma}aO \)-compact subset of \(Y \). Let \(\{y_n\} \) be any sequence in \(f(M) \). Then for each \(n \in N \), there exists a point \(x_n \in M \) such that \(f(x_n) = y_n \). Since \(\{x_n\} \) is a sequence in the sequentially \(\tilde{\gamma}aO \)-compact set \(M \) there exists a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) that \(\tilde{\gamma}a \)-converges to a point in \(M \). By hypothesis \(f/M : M \to f(M) \) is sequentially sub \(\tilde{\gamma}a \)-continuous, hence there exists a subsequence \(\{y_{n_k}\} \) of \(\{y_n\} \) that \(\tilde{\gamma}a \)-converges to \(y \in f(M) \). This implies that \(f(M) \) is sequentially \(\tilde{\gamma}aO \)-compact in \(Y \).

Corollary 3.7. If a function \(f : X \to Y \) is sequentially sub \(\tilde{\gamma}a \)-continuous and \(f(M) \) is sequentially \(\tilde{\gamma}a \)-closed in \(Y \) for each sequentially \(\tilde{\gamma}aO \)-compact set \(M \) of \(X \), then \(f \) is sequentially \(\tilde{\gamma}aO \)-compact preserving.
Proof. It will sufficient to show that \(f/M : M \to f(M) \) is sequentially sub \(\tilde{\alpha} \)-continuous for each sequentially \(\tilde{\alpha} \)-compact set \(M \) of \(X \) and by Lemma 3.3. we are done. So, let \(\{x_n\} \) be any sequence in \(M \) that \(\tilde{\alpha} \)-converges to a point \(x \in M \). Then, since \(f \) is sequentially sub \(\tilde{\alpha} \)-continuous there exists a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) and a point \(y \in Y \) such that \(f(x_{n_k}) \to y \). Since \(\{f(x_{n_k})\} \) is a sequence in the sequentially \(\tilde{\alpha} \)-closed set \(f(M) \) of \(Y \), we obtain \(y \in f(M) \). This implies that \(f/M : M \to f(M) \) is sequentially sub \(\tilde{\alpha} \)-continuous. \(\Box \)

4. Slightly \(\tilde{\alpha} \)-Continuous Functions

Definition 4.1. A function \(f : X \to Y \) is said to be slightly \(\tilde{\alpha} \)-continuous if for each \(x \in X \) and for each \(v \in CO(Y, f(x)) \), there exists \(U \in \tilde{\alpha}O(X, x) \) such that \(f(U) \subset V \), where \(CO(Y, f(x)) \) is the family of clopen sets containing \(f(x) \) in a space \(Y \).

Definition 4.2. Let \((D, \leq)\) be a directed set \(A \) net \(\{x_\lambda : \lambda \in D\} \) in \(X \) is said to be \(\tilde{\alpha} \)-convergent to a point \(x \in X \) if \(\{x_\lambda\}_{\lambda \in D} \) is eventually in each \(V \in \tilde{\alpha}O(X, x) \).

Theorem 4.3. For a function \(f : X \to Y \), the following are equivalent:

(a) \(f \) is slightly \(\tilde{\alpha} \)-continuous.
(b) \(f^{-1}(v) \in \tilde{\alpha}O(X) \) for each \(V \in CO(Y) \).
(c) \(f^{-1}(v) \) is \(\tilde{\alpha} \)-clopen for each \(V \in CO(Y) \).
(d) for each \(x \in X \) and for each net \(\{x_\lambda\}_{\lambda \in D} \) in \(X \).

Proof. (a) \(\Rightarrow \) (b). Let \(V \in CO(Y) \) and let \(x \in f^{-1}(V) \). Then \(f(x) \in V \). Since \(f \) is slightly \(\tilde{\alpha} \)-continuous, there is an \(U \in \tilde{\alpha}O(X, x) \) such that \(f(U) \subset V \). Thus \(f^{-1}(U) = \bigcup \{U : x \in f^{-1}(V)\} \), that is \(f^{-1}(U) \) is a union of \(\tilde{\alpha} \)-open sets. Hence \(f^{-1}(U) \in \tilde{\alpha}O(X) \).

(b) \(\Rightarrow \) (c). Let \(V \in CO(Y) \). Then \((Y - V) \in CO(X) \). By hypothesis \(f^{-1}(Y - V) = X - f^{-1}(V) \in \tilde{\alpha}O(X) \). Thus \(f^{-1}(V) \) is \(\tilde{\alpha} \)-closed.

(c) \(\Rightarrow \) (d). Let \(\{x_\lambda\}_{\lambda \in D} \) be a net in \(X \) \(\tilde{\alpha} \)-converging to \(x \) and let \(V \in CO(Y, f(x)) \) be a net. There is thus a \(U \in \tilde{\alpha}O(X, x) \) such that \(f(U) \subset V \). There is thus a \(\lambda_0 \in D \) such that \(\lambda_0 \leq \lambda \) implies \(x_\lambda \in U \) and \(\{x_\lambda\}_{\lambda \in D} \) is \(\tilde{\alpha} \)-convergent to \(x \). Thus \(f(x_\lambda) \in f(U) \subset V \) for all \(\lambda \). Thus \(\{f(x_\lambda)\}_{\lambda \in D} \) is \(\tilde{\alpha} \)-convergent to \(f(x) \).

(d) \(\Rightarrow \) (a). Suppose that \(f \) is not slightly \(\tilde{\alpha} \)-continuous at a point \(x \in X \), then there exists a \(V \in CO(Y, f(x)) \) such that \(f(U) \) does not contained in \(V \) for each \(U \in \tilde{\alpha}O(X, x) \). So \(f(U) \cap (Y - V) \neq \emptyset \) and thus
If f is continuous, then for each $y \in Y$, $f^{-1}(y) \neq \emptyset$. Thus, for each $y \in Y$, there exists a selection function x_U from $\tilde{\gamma}O(X, x)$ into X for each $U \in \tilde{\gamma}O(X, x)$, and $\{x_U\} \in \tilde{\gamma}O(X, x)$ is an infinite net in X $\tilde{\gamma}$-converging to x. Since $x_U \in U \cap f^{-1}(y - V) = U - f^{-1}(V)$ and so $f(x_U) \notin V$, for each U, $\{f(x_U)\} \in \tilde{\gamma}O(X, x)$ is not eventually in $V \cap CO(Y, f(x))$, which is a contradiction. Hence (a) holds.

Theorem 4.4. If $f : X \to Y$ is slightly $\tilde{\gamma}$-continuous and $g : Y \to Z$ is slightly continuous, then their composition $g \circ f$ is slightly $\tilde{\gamma}$-continuous.

Proof. Let $V \in CO(Z)$, then $g^{-1}(V) \in CO(Y)$ [6]. Since f is slightly $\tilde{\gamma}$-continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \in \tilde{\gamma}O(X)$. Thus $g \circ f$ is slightly $\tilde{\gamma}$-continuous.

Theorem 4.5. The following are equivalent for a function $f : X \to Y$:

(a) f is slightly $\tilde{\gamma}$-continuous,
(b) for each $x \in X$ and for each $V \in CO(Y, f(x))$, there exists a $\tilde{\gamma}$-closed set U such that $f(U) \subset U$,
(c) for each closed set F of Y, $f^{-1}(F)$ is $\tilde{\gamma}$-closed,
(d) $f(cl(A)) \subset \tilde{\gamma}ocl(f(A))$ for each $A \subset X$ and
(e) $cl(f^{-1}(B)) \subset f^{-1}(\tilde{\gamma}ocl(B))$ for each $B \subset Y$.

Proof. (a) \Rightarrow (b) Let $x \in X$ and $V \in CO(Y, f(x))$ by Theorem 4.3. $f^{-1}(V)$ is clopen. Put $U = f^{-1}(V)$, then $x \in U$ and $f(U) \subset V$.

(b) \Rightarrow (c) It is obvious.

(c) \Rightarrow (d) Since $\tilde{\gamma}ocl(f(A))$ is the smallest $\tilde{\gamma}$-closed set containing $f(A)$, hence by (c), we have (d).

(d) \Rightarrow (e) For each $B \subset Y$, $f(cl(f^{-1}(B))) \subset \tilde{\gamma}ocl(f(f^{-1}(B))) \subset \tilde{\gamma}ocl(B)$. Hence $f(cl(f^{-1}(B))) \subset \tilde{\gamma}ocl(B) \Rightarrow cl(f^{-1}(B)) \subset f^{-1}(\tilde{\gamma}ocl(B))$.

(e) \Rightarrow (a) Let $V \in CO(Y)$. Then $(Y - V) \in CO(X)$, by (e), we have $cl(f^{-1}(Y - V)) \subset f^{-1}(\tilde{\gamma}ocl(Y - V)) = f^{-1}(Y - V)$, since every closed set is $\tilde{\gamma}$-closed, thus $f^{-1}(Y - V) = X - f^{-1}(V)$ is closed and thus $\tilde{\gamma}$-closed, thus $f^{-1}(V) \in \tilde{\gamma}O(X)$ and f is slightly $\tilde{\gamma}$-continuous.

Theorem 4.6. If $f : X \to Y$ is a slightly $\tilde{\gamma}$-continuous injection and Y is clopen T_1, then X is $\tilde{\gamma}$-T_1.

Proof. Suppose that Y is clopen T_1. For any distinct points x and y in X, there exist $V, W \in CO(Y)$ such that $f(x) \in V$, $f(y) \notin V$, $f(x) \notin W$ and $f(y) \in W$. Since f is slightly $\tilde{\gamma}$-continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are $\tilde{\gamma}$-open subsets of X such that $x \notin f^{-1}(V)$, $y \notin f^{-1}(V)$, $x \notin f^{-1}(W)$ and $y \in f^{-1}(W)$. This shows that X is $\tilde{\gamma}$-T_1.

\[\square\]
Theorem 4.7. If \(f : X \to Y \) is a slightly \(\tilde{g}_\alpha \)-continuous surjection and \(Y \) is clopen \(T_2 \), then \(X \) is \(\tilde{g}_\alpha-T_2 \).

Proof. For any pair of distinct points \(x \) and \(y \) in \(X \), there exist disjoint clopen sets \(U \) and \(V \) in \(Y \) such that \(f(x) \in U \) and \(f(y) \in V \). Since \(f \) is slightly \(\tilde{g}_\alpha \)-continuous, \(f^{-1}(U) \) and \(f^{-1}(V) \) are \(\tilde{g}_\alpha \)-open in \(X \) containing \(x \) and \(y \) respectively. Therefore \(f^{-1}(U) \cap f^{-1}(V) = \emptyset \) because \(U \cap V = \emptyset \). This shows that \(X \) is \(\tilde{g}_\alpha-T_2 \). \(\square \)

Definition 4.8. A space is called \(\tilde{g}_\alpha \)-regular if for each \(\tilde{g}_\alpha \)-closed set \(F \) and each point \(x \notin F \), there exist disjoint open sets \(U \) and \(V \) such that \(F \subset U \) and \(x \in V \).

Definition 4.9. A space is said to be \(\tilde{g}_\alpha \)-normal if for every pair of disjoint \(\tilde{g}_\alpha \)-closed subsets \(F_1 \) and \(F_2 \) of \(X \), there exist disjoint open sets \(U \) and \(V \) such that \(F_1 \subset U \) and \(F_2 \subset V \).

Theorem 4.10. If \(f \) is slightly \(\tilde{g}_\alpha \)-continuous injective open function from a \(\tilde{g}_\alpha \)-regular space \(X \) onto a space \(Y \), then \(Y \) is clopen regular.

Proof. Let \(F \) be clopen set in \(Y \) and be \(y \notin F \). Take \(y = f(x) \). Since \(f \) is slightly \(\tilde{g}_\alpha \)-continuous, \(f^{-1}(F) \) is a \(\tilde{g}_\alpha \)-closed set. Take \(G = f^{-1}(F) \), we have \(x \notin G \). Since \(X \) is \(\tilde{g}_\alpha \)-regular, there exist disjoint open sets \(U \) and \(V \) such that \(G \subset U \) and \(x \in V \). We obtain that \(F = f(G) \subset f(U) \) and \(y = f(x) \in f(V) \) such that \(f(U) \) and \(f(V) \) are disjoint open sets. This shows that \(Y \) is clopen regular. \(\square \)

Theorem 4.11. If \(f \) is slightly \(\tilde{g}_\alpha \)-continuous injective open function from a \(\tilde{g}_\alpha \)-normal space \(X \) onto a space \(Y \), then \(Y \) is clopen normal.

Proof. Let \(F_1 \) and \(F_2 \) be disjoint clopen subsets of \(Y \). Since \(f \) is slightly \(\tilde{g}_\alpha \)-continuous, \(f^{-1}(F_1) \) and \(f^{-1}(F_2) \) are \(\tilde{g}_\alpha \)-closed sets. Take \(U = f^{-1}(F_1) \) and \(V = f^{-1}(F_2) \). We have \(U \cap V = \emptyset \). Since \(X \) is \(\tilde{g}_\alpha \)-regular, there exist disjoint open sets \(A \) and \(B \) such that \(U \subset A \) and \(V \subset B \). We obtain that \(F_1 = f(U) \subset f(A) \) and \(F_2 = f(V) \subset f(B) \) such that \(f(A) \) and \(f(B) \) are disjoint open sets. Thus, \(Y \) is clopen normal. \(\square \)

References

[2] R. Devi and A. Selvakumar, On \(\tilde{g}_\alpha \)-closed \(\text{sets} \) in \(\text{Topological spaces} \) (Submitted).
Application of Θ_{n}-closed sets

* Department of Mathematics
Myongji University
Kyunggi 449-728, Republic of Korea
E-mail: ykkim@mju.ac.kr

** Department of Mathematics
Kongunadu and Science College
Coimbatore 641029, Tamil Nadu, India
E-mail: devicebe@yahoo.com

*** Department of Mathematics
Kongunadu and Science College
Coimbatore 641029, Tamil Nadu, India