제조생산정보화시스템을위한BIS시스템

전병태

Business Intelligence System for Manufacturing Production Information System

ByungTae Chun

요약
생산정보시스템(Manufacturing Information System)은 생산기능을구성하는 생산기회, 작업관리, 공정의운영
과통제그리고생산실적관리등과관련된활동을지원하는정보시스템이라할수있다.최근생산현장은생산고도화
를위하여디지털정보화및통합화에대한새로운변화를맞고있다.따라서본논문에서는현재생산정보화시스템
의이슈들을알아보고,새로운변화에적응하기위한주요한이슈및요소들을제시한다.마지막으로이러한요소
들을기반으로하여제조생산정보화시스템구축을위한비즈니스인텔리전스시스템을제안한다.

주제어:생산정보시스템,스마트기술,클라우드컴퓨팅,IT융합, BIS

Abstract
Manufacturing Information System is a information system which supports the activities such as production planning, workflow management, work stage control. Manufacturing fields are showing new properties in today such as digital information, globalization, integration, to make sophisticated production. In this paper, we describe major issues in current systems. Eventually, we propose major factors to adapt for new changes and BI systems to support manufacturing production information system based on the major factors.

Key Words: Production Information System, Smart technology, Cloud computing, BIS, IT-convergence

1. 서론

현재의지식정보화사회는IT를기반으로매우급속
하게진화하고있는중이다.IT기반의사회변화는우리
의생활환경변화의핵심으로대두되고있다[1][2].제조
생산시스템영역도예의는없이 좀더강력한경쟁력
향상과환경변화에대한능동적응용력강화등을위
한노력들이요구되고있다.최근들어스마트워크
(smart work)와IT융합(IT convergence)이시대적이슈
로등장하고있으며스마트(smart)는복잡하지않고단
정하고 móvil 있다는의형적표현과지능적이고특특하다는
다양성표현을포함하는용어이고,융합(convergence)은
서로다른성질을가진두개이상의개체가으나서하나
의개체로제정립되는과정을말하는용어이다.

제조생산기구에서도입하고있는MES(제조실행
시스템:Manufacturing Execution System)역시이러한시
장변화에응용하기위해스마트화및IT융합화를실현
하려는현실에네요. MES는제품주문에서완성
품완료까지의생산활동을추적관리하고생산의최적
화를위한정보를제공한다.MES는생산품이연계,어디
에서,어떻게,누구에 의해생산되었는지에대한상세한
기록등을보기위해제공한다.MES는생산현장
에서발생하고있는실시간이벤트정보를현장작업자
나관리자에게알리고,신속한조치를통해생산활동을
보다원활하게변화시키고,필요한요소를제거시킴으
로써생산공정과기능을개선한다.MES는위로제조
공정의장비,반송설비,PLC(Progammmable Logic
Controller),POP(Point of Production)장비등을제어하
여자동화를가능하게해주는자동화시스템과인터페이스
하고,상위로는독립적인Planning시스템또는
ERP(Enterprise Resource Planning) 시스템과 인터페이스 한다. 그러므로 그림 1과 같이 최상위 전차적인 자원 관리에서부터 최하위 생산 장비까지의 제어를 통합시켜 주는 역할을 수행한다.

[그림 1] 생산정보시스템 계층 구조

ERP가 "무엇을 얼마나, 언제 생산할 것인가?"에 대한 해답을 사용자에게 제공하기 위해 하위 MES에게 계획 정보를 전달하고, MES는 현장 작업자 및 설비에 ERP의 지시를 제조 공정 기준에 따라 작업지시를 제공하여 생산현장에서 "무엇을 얼마나, 언제 생산할 것인가?"라는 실시간 현황정보를 파악하고 이 결과를 토대로 ERP에게 수집 정보를 전달한다. 마지막으로 POP/Control은 공정 설비로부터 운행 데이터를 수집, 공정상태, 작업결과 등을 상위 MES 계층으로 전달한다. MES의 비즈니스 적용 범위는 자동차 기계, 반도체, 전자, 식품제조, 제약, 항공, 의료기기, 섬유 및 천장과 같은 제조 산업에 전 분야에 광범위하게 사용되고, 제조 기업의 생산 정보 인프라로써 중요한 위치를 차지한다.

본 연구는 기존 MES 시스템의 주요 특징 및 주요 이슈를 도출한다. 그리고 스마트 제조 실행 시스템을 구축하기 위한 시스템 구성, 시장 요구 사항 및 기술적 이슈, 향후 생산 정보 시스템의 방향을 제시한다.

2. 관련 연구 동향 및 이슈

전통적인 MES시스템은 공장 내의 생산 활동을 얼마나 잘 지원하고 개선할 수 있느냐에 초점을 맞추어져 있었다. 따라서 MES의 역할은 공장 내의 실시간 모니터링, 제어, 물류 및 작업내역 추적 관리, 상태파악, 블링 관리에 초점을 맞추어져 있다. 지금까지의 고정적인 관점의 생산관리는 정확한 생산계획을 작성하고 생산을 시작하고, 생산 중 문제가 발생하였을 경우 얼마나 빠르게 문제를 해결하느냐가 관건이었다. 그러나 이제 생산에 영향을 주는 문제를 미리 예방하는 차원을 빼앗거나 생산상이나 품질에 문제가 발생할 수 있는 부분을 찾아내 그 문제를 자동으로 해결하거나 가장 이상적인 생산 및 품질자료를 찾아내 향후 생산물 제품에 반영하는 단계까지 진화해 나가고 있다.

이러한 변화들은 MES의 역할을 한 공장 내의 생산활동에서 Supplier나 협력업체와의 협업시스템 (Collaborative)의 형태로 발전해 나가고 있으며 기업활동과 관련한 APS(Advanced Planning and Scheduling), FDC(Fault Detect and Classification), APC(Advanced Process Control), EAM(Enterprise Asset Management) 등과 결합하여 상위의 ERP, CRM(Customer Relationship Management), SCM(Supply Chain Management) 등과 연계된 생산정보시스템으로 개념이 확장되고 있다. 반면 IT 기술의 진화는 MES시스템을 좀 더 유연한 시스템으로, 그리고 공정 안의 시스템에서 공장 밖으로까지의 시스템으로 확장시키고 있다.

생산관리시스템은 기업정보 시스템의 요소로서 생산현장에서 생산을 수행하기 위한 제어활동(스케줄링, 작업지시, 품질관리, 작업실적검체 등을 지원하기 위한 관리시스템으로 생산계획 및 설계, 그리고 생산현장에서 발생하는 각종 데이터를 더욱 유효하고 체계적으로 제공해 정형화하는 통합정보시스템을 말한다.

ERP와 같은 상위 전자적 전산시스템은 제조현장에 대해 단순한 형태의 작업지시 명령만을 전달하고 제조현장에서는 작업지시에 따른 실적을 다시 상위 전산시스템에 보고하기 때문에 작업지시로부터 실적보고 사이의 중간과정에 대한 추적/감시/제어가 불가능하다. 생산정보시스템(MES)은 제조현장과 상위전산시스템 간의 교량 역할을 수행하면서 상위 전산시스템에서 포착되지 않는 원가증가, 품질저하 등의 요인(생산계획과 실행의 차이) 등을 추적, 감시, 제어, 분석하며, 공정제작, 생산기체, 보유자원, 설비정비 및 현황, 품질자료 등의 정보를 DB화하여 관리하고 이를 기반으로 여러 가지 다양한 정보들이 표준화와 정형화를 가능하게 해주고 현장상태의 실시간 정보제공을 통해 관리자와 작업자의 의사결정을 지원하는 기능을 수행한다.

네트워크 기술의 발전은 공장의 생산 현장을 실시간
으로 언제 어디서나 모니터링 할 수 있는 환경으로 변화시켰고, 현장의 작업지시 및 통제까지 가능한 환경으로 MES시스템을 확장시켰다. 더 나아가 설비의 모니터링 및 제어, 심지어는 설비 유지보수 작업까지도 인터넷을 통해 가능한 수준까지도 올라와 있다. 또한 유비쿼터스 및 실시간 환경으로의 변화는 단순 제조의 범위를 넘어 시장의 추세를 감지하여 생산 대응할 수 있는 시스템으로 발전시켜가고 있다.

최근 세계 생산정보시스템 협력(MESA)에서 정의한 MES 시스템의 주요 기능은 살펴보면, 공정진행 정보 Monitoring 및 Control, 설비체계 및 Monitoring, 품질정보 Tracking 및 Control, 설비정보 검색, 잘못정렬 관리, 재품별 관리, 차재품질 관리, 인력관리, 공급관리 등 생산 현장에서 발생할 수 있는 모든 정보를 통합 관리한다고 할 수 있다. MES 시스템의 기능은 11가지로 구분하고 있고[3][4][5][6].

3. BI 시스템

현재 구현된 제조 실행 정보 시스템 구조는 주로 클라
이언트-서버로 구성되어 있다. 이는 중앙집중형 구성으
로 시스템 가능성을(availability), 단일 고장점(single point of failure), 규모성(scalability) 등에 취약하다. 이러한 가
용성, 단일 고장점 문제를 극복하기 위한 대안으로 시스
템 이중화(duplication) 방법을 채택하고 있다. 이러한 방
법은 하나의 센터에서 로컬 네트워크에 기초한 운영하
며 적합하다.

그러나 생산 현장의 분산 공장 다양화 및 원거리화에
따라 현재의 서버가 집결된 센터 운용 방식은 정보 서비스의 가능성을 규모성을 극대화하고, 단일 고장점 극복
을 위한 이중화에 네트워크 및 시스템 제약성을 높인다. 이러한 원거리 분산 클라우드 MES 시스템을 제안하고 기존 MES 시스템과 호환성을 유지하도록 한다. 본 절은 이러한 분산 MES 클라우드 시스템을 구축하기 위한 기 본 구조를 기술한다.

스마트 클라우드 MES 시스템은 다음과 같은 MES 생산정보시스템의 특징들을 지원한다. 첫째는 은닉성 (Hibernation): 사용자가 선택적 입력 및 디스플레이 결과에 어떠한 내부 정보도 물리적 원활한 생산작업 관리를 수행할 수 있다는 것을 의미한다. 둘째는 즉시성 (Immediacy): 사용자가 요구한 자원들을 즉시 제공할 수 있다는 것을 의미한다. 셋째는 이동성(Mobility): 사용자 이용도 불구하고 항상 단절없는 생산정보 서비스 및 관리를 지원한다는 것을 의미한다. 넷째, MES 시스템은 실패 시에도 높은 가용성(High Availability)을 지원하는 분산 (네트워크) 실패 극복 시스템 모듈을 지원한다. 다
셋째, 온라인 환경성(Easy Expansion)과 함께 MES 시스
템의 높은 시스템 성능(High Performance)을 실현하는
규모성(Scalability)로 시스템 모듈을 지원한다. 여섯째, DB 및 시스템 이중화 등을 통한 Data 안전성 및 시스템 안정
화를 지원하는 결합기능(Fault tolerance) 시스템 모듈을 지원한다[5]. 또한 분산 클라우드 생산관리시스템 사이의 정보 교환을 제공하기 위한 분산 MES 인터페이스 모듈을 제공한다. 각 로컬 MES는 독립적으로 하부 계층으로 지역공장 관리(IFA)하고, 상부계층으로 ERP, SCM 등
의 다른 기업 정보화서비스들과 연동된다. 이러한 분
산 MES 인터페이스를 지원하는 클라우드 서비스는 데
이터 교환 및 공유를 위한 데이터 인터페이스(Data I/F)
와 기능 공유 및 파라미터 페스를 위한 로직 인터페이스
(Logic I/F)를 제공한다. 그리고 확장성을 지원하기 위한
XML과 API set을 지원한다.

이러한 생산정보시스템을 클라우드 서비스로 구축하
기 위해서는 다음과 같은 중요한 선정과제들이 존재한다.

첫째는 네트워크 가상화에 따른 차별화된 데이터 액
세스 실시간 보장을 위한 실시간 네트워크 가상화 시
스템 설계 및 구현이 중요한 선정과제로 요구되고 있다.

둘째로 제조생산현장에서 사용되는 생산정보의 고객
기밀성을 보장하기 위한 차별화된 보안시스템 구축이 요
구된다(이와7).

셋째로 새로운 클라우드 가상화 서비스 실현에 대해
모든 사용자들이 동일한 사용자 인터페이스를 지원받는
고객 서비스 투명성(Transparency)을 보장하고, 통합 실
시간 모니터링 인터페이스 시스템 구축이 요구된다는 것
이다.

생산정보시스템에서 구축된 데이터의하우징(DW: Data-Warehousing)에서 기업의 비즈니스 요구에 따라
생산운영을 제어하기 위해서 실시간으로 수집된 전역 데이터에 근거하여 최적화된 의사 결정을 수행해야한다.

이러한 과정은 비즈니스 인텔리전스(Business Intelligence)
라고 한다. 이는 기존의 특정 시간, 공간, 제품 단위에 기
초한 의사결정은 생산원가, 생산량, 제품남기, 물류 등의

233
최적 해를 도출하는데 시간적으로나 정보 정확성 측면에서 제한점을 가지고 있다. 따라서 그림 2와 같은 물결(rule)에 기초한 비즈니스 지능(Business Intelligence)이라고 자동화된 의사 결정과정이 기업 활동에 필수적으로 요구된다.

[그림 2] BI 시스템

의사결정 과정은 먼저, 각 기업의 주요 생산 활동의 요소로서 나타나는 핵심 성장 지표(KPI)에 기초한 관리 키워드에 따라 데이터베이스에서 키워드 단위 데이터 테이블(Keyboard-base table)을 구성한다. 이 키워드 단위 데이터 블록들은 비즈니스 요구 우선순위에 기초하여 주기적 또는 비주기적(이벤트 기반)으로 최적화 분석(optimization analysis)을 수행한다. 이러한 분석결과가 선택적 대안들을 사용자에게 제공한다(Report process). 부가적인 키워드 클로즈와 더불어 사용자 또는 자동 의사 결정체가 이루어지고 의사결정 시스템은 잠재적인 시뮬레이션 결과에 따라 의사결정 반영 예측결과를 도출하여 사용자 또는 자동 퍼드백 투합에 의해 비즈니스 조건 파라미터를 반복시킬 때까지 반복적인 의사결정 과정을 수행한다.

이러한 비즈니스 인터리스스 시스템의 정보 사용자는 다음과 같이 실시간 정보와 비실시간 정보를 구분 적용할 수 있다. 실시간 비즈니스 인터리스스 사용자에는 급급 이벤트(Istant Event), 실시간 정보 수집(Istant collection) 및 수집방법, 실시간 퍼드백(Istant response or feedback)이 포함되며 비실시간 및 배치 비즈니스 인터리스스 사용자에는 일시적인 이벤트(Lazy Event), 평가지표 및 가이드 제시, 비실시간 정보수집(Time-consuming collection) 및 퍼드백(Lazy feedback)이 포함된다.

BI의 비즈니스에 대한 활용은 생물 시나리오 및 도구를 구성하여, 고객사 비즈니스 컨설팅 제안 및 결과물 프레임워크로 활용한다.

BI 주요 기능은 DB/DW 확장 기반 분석 인터페이스, 지능적 의사결정 모델, 리포트 기능, 모바일 확장 기능 등으로 구분된다.

4. 결론

현재의 지식 정보화 사회는 IT를 기반으로 매우 급속하게 전환하고 있는 중이다. IT 기반의 사회 변화는 우리의 생활 환경 변화의 핵심으로 대두되고 있다. 제조생산 시스템 영역도 예외가 아니라 더욱 강력한 경쟁력 향상과 환경변화에 대한 농장적 적응력 강화등을 위한 노력들이 요구되고 있다. 최근 들어 스마트 워크(smart work)와 IT융합(IT convergence)가 시대적 이슈로 등장하고 있다. 제조생산 기업에서 도입하고 있는 MES(제조실시간시스템: Manufacturing Execution System) 역시 이러한 시장 변화에 부응하기 위해 스마트화 및 IT융합화를 실현해야 하는 현실에 놓여있다.

본 연구는 기존 MES 시스템의 주요 특징 및 주요 이슈를 도출하였다. 그리고 스마트 제조 실행 시스템을 구축하기 위한 시스템 구성, 시장 요구 사항 및 기술적 이슈, 향후 생산 정보 시스템의 방향을 제시한다.

본 연구는 기존 제조실시간시스템을 클라우드 생산정보 시스템과 비즈니스 인테리스스 시스템을 통해서 스마트 생산정보 프로세스의 고도화를 제안하였다. 이는 기존 MES 시스템의 한계를 극복하는 동시에 새로운 비즈니스 환경에 부응한다. 이러한 결과에 따라 다음과 같이 스마트 MES 시스템의 구축 목표를 달성할 수 있다.

첫째, 불필요한 중복성을 배제함으로써 지역 최적화 및 전역 최적화를 실행함으로써 비용 최소화를 실현한다.
둘째, 분산 생산정보의 시스템을 통해서 기업 생산성을 향상시킨다. 세째, 생산자, 생산 설비, 제품 및 부품에 의존한 스마트 품질 개선을 실현한다. 넷째, 지능적인 비즈니스 로직을 추가함으로써 효율적 생산관리 및 판매향상에 기여할 수 있다.

본 연구에서 제시하는 생산정보시스템은 모든 문제를 해결하지는 못할 것이다. 하지만 이러한 노력으로 제조 생산 공정에서의 최적화 노력에 조금이나마 보탬이 될 것으로 기대한다.
참 고 문 헌


전 병 태

* 2001년 2월 : 고려대학교 박사
* 1989 ~ 1996년 : 한국과학기술연구원(KIST) 연구원
* 2004년 2월 ~ 현재 : 한국대학교 컴퓨터정보공학과 교수
* 1992년 5월 : IRE52 장영실 상 수상 (과거부 장관상)
* 2007년 5월 ~ 2010년 5월 : 한국전자통신연구원 초빙연구원
* 2003년 8월 ~ 현재 : 한국작업권위원 SW김정현문위원
* 2009년 2월 ~ 현재 : 한국지식정보학회 이사
* 2004년 2월 ~ 현재 : 한국소프트웨어감정평가학회 부회장
* 관심분야 : 영상처리, 멀티미디어 영상처리