Abstract

Since 2004, the government decided to gradually introduce Actual Cost Data into cost estimate for improving problems of below-cost tendering and to reflect fair market price through competition and carry contract efficiently. However, there are many concerns that Actual Cost Data has not reflected real market price, even that has contributed to reduce the government’s budget. General construction firm’s burden for labor cost is imputed to specialty contractors and eventually it becomes construction worker’s burden. Therefore, realization of Actual Cost Data is very important factor to settle this system.

To understand realization level and make short term forecast, this paper drew construction group of which labor cost constitutes more than 95% of direct cost, and compares their Actual Cost Data with relevant skilled workers’s unit wage and predicts using time series analysis.

The bid price which is not be reflected market price accelerates work environment changes and leads to directly affect such as late disbursement of wages, bankruptcy to workers. Therefore this paper is expected to be used to the preliminary data for solving the problem and establishing improvement of Actual Cost Data.

Keywords: Actual Cost Data, Building Construction Index, labor cost, time series analysis, level of realization, ARIMA

1. 서론

1.1 연구의 배경 및 목적

표준품셈을 통한 원가계산 방식의 문제점을 개선하고, 적정 시장가격을 반영하려는 목적으로 2004년 도입된 실적공사비제도는 공공공사의 납찰가를 낮추어 예산을 절감하는 효과가 있는 것으로 분석되고 있다.

건설 산업은 국가 예산의 7%가 투입되는 국기재정 사업으로, 한정된 자원의 활용을 극대화하고 예산의 불필요한 낭비를 최소화하기 위한 노력은 매우 중요하다. 하지만 그러한 노력이 시장가격의 왜곡으로 이어지지 않도록 실적공사비에 적정 가격을 반영하고 현실화(現実化)하려는 작업이 요구된다.

국토해양부에 의해 매년 2차례 발표되는 실적공사비 단가는 과거의 공사비 실적을 토대로 건설공사비지수의 보정을 통해 결정되나, 2004년 ‘실적공사비 산산해도’ 도입 이후 건설공사비지수가 45.4% 증가하는 동안 실적공사비 단가가 1.14% 하락하는 등 현실을 반영하고 있지 못하고 있는 것으로 나타나고 있다.

건설 산업은 노무비의 비중이 전체 공사비의 30~40%를 차지하고(건설산업연구원 2003) 고용창출효과가 제조업의 1.8배
시계열분석을 통한 실적공사비의 노무비 분석 및 예측에 관한 연구

2. 이론적고찰

본 장에서는 실적공사비 제도와 건설업임금실태조사를 분석하여 실적공사비 제도의 문제점을 통해 향후 정책 방향제시 및 3장의 실적공사비 단가와 시중노임단가의 비교・분석의 근거로 활용하고자 한다.

2.1 실적공사비 제도

실적공사비 제도는 건설공사의 세부공종별 품셈을 이용하지 않고, 이미 수행한 공사의 계약단가 또는 원가의 실제 거래가격 등을 이용하여 예정가격을 산정하는 방식이다. 현행은 시공단계의 자원별 생산성 정보(표준품셈)를 직접 조사한 결과를 기초자료로 삼고 있다. 하지만, 실적공사비에서는 각 자원별 생산성 정보를 직접 공사로 수행하는 건설업체의 기술능력에 의해 결정하여 발주자는 건설업체가 제출한 산출내역서를 근거로 양질의 실적공사비 자료를 축적하여 예산계획 및 설계과정에서 공사비 검토와 공사발주를 위한 도급공사비를 산정하는 것이다.

실적공사비 제도의 추진경위는 다음과 같다.
• 국내 적산제도 개선을 위한 연구용역을 통해 실적공사비 제도의 전개방안 검토('93.12)
• 실적공사비 제도 시행을 위한 관계법령 개정(국가계약법 시행령 제9조, '95.7)
• 실적공사비 및 표준품셈 관리규정 제정('03.12)
• '04년 상반기 실적공사비 적용대상 공종 및 단가 공고(대상 공종 220개)
• 실적공사비제도를 단계적・점진적으로 시행하되 표준품셈 방식과 병행 운영
• '12년 현재 2,129개 공종으로 확대 시행

또한 실적공사비 제도는 품셈을 이용하지 않고 재료비・노무비・직접공사비용이 포함된 공중별 단가(unit price)를 계약단가에 포함하여 실제공사의 예정가격 산정에 활용하는 방식이다.

<p>| 1. 품셈과 실적공사비제도의 비교 |</p>
<table>
<thead>
<tr>
<th>구분</th>
<th>품셈제도</th>
<th>실적공사비제도</th>
</tr>
</thead>
<tbody>
<tr>
<td>내역서 작성방식</td>
<td>실제지출과 비용으로 계산</td>
<td>실제지출과 비용으로 계산, 일반적산법과 결산공사비율 적용</td>
</tr>
<tr>
<td>계약단가계산방식</td>
<td>표준품셈계산 방법에 의한 계산</td>
<td>표준품셈계산 방법에 의한 계산, 내역서 작성방식 적용</td>
</tr>
<tr>
<td>직접공사비용</td>
<td>재료비・노무비・직접공사비</td>
<td>재료비・노무비・직접공사비</td>
</tr>
<tr>
<td>건립공사비용</td>
<td>비용계산방식</td>
<td>비용계산방식</td>
</tr>
<tr>
<td>설계비용</td>
<td>통제조정방식</td>
<td>수량조정방식</td>
</tr>
</tbody>
</table>

표 1. 품셈과 실적공사비제도의 비교

그림 1. 연구의 흐름도

1.2 연구의 범위 및 배경

본 연구는 국토해양부에서 발표하는 '건설공사 실적공사비 적용 공종 및 단가'와 대한건설협회의 '건설업 임금실태 조사보고서(시중노임단가)'의 통계자료를 기반으로 수행되었다.

본 연구는 개별 기능공의 시중노임단가와 실적공사비와의 비교, 분석을 통해 노무비 측면에서 실적공사비의 현실화 수준을 판단하는 것을 그 목적으로 하며, 추후 실적공사비 제도 개선 방안 수립을 위한 기초자료를 활용하고자 한다. 실적공사비 대상 공정의 수는 2004년 220개 공정을 시작으로 지속적으로 확대되어 2012년 현재 2,129개 공정에 적용되고 있다.

연구의 방법 및 절차는 다음과 같다.
1) 실적공사비 조사대상은 2,129개 공정 중 건축공사를 대상으로 노무중심공정 선별
2) 대한건설협회의 145개 직종분류를 이용, 각 공정별 해당 기능공의 직종 도출
3) 노무중심 공정의 실적공사비 단가와 해당 기능공의 시중 노임단가 비교・분석
4) 시계열 분석을 통해 변화를 파악 본연구의 흐름을 도식화하는 그림 1과 같다.
그러나, 2004년 실적공사비 제도의 도입 이후, 적정공사비 산출을 위한 실적공사비 적산제도 개선방안에 관한 연구(박신 2000), 물가변동에 따른 실적공사비 등락률 산출의 문제점 및 개선방안(정기창 2007), 한국건설산업연구원 등 여러 연구를 통해 실적공사비제도의 문제점들이 제기되고 있다.

<table>
<thead>
<tr>
<th>항목</th>
<th>문제점</th>
<th>출처</th>
</tr>
</thead>
<tbody>
<tr>
<td>공사원가</td>
<td>산정기준에 공사특성 반영이 미흡</td>
<td>적정공사비 산출을 위한 실적공사비 적산제도 개선방안에 관한 연구(박신, 2000)</td>
</tr>
<tr>
<td>물가변동율 반영의 현실성, 시의성</td>
<td>공사낙찰률이 하락하면 실적단가로 하락하기 때문에 물가변동률의 지표로 활용하는 것은 현실성이 떨어짐</td>
<td>물가변동에 따른 실적공사비 등락률 산출의 문제점 및 개선방안(정기창, 2007)</td>
</tr>
<tr>
<td>간접공사비 항목의 누락 및 공사기간 미반영</td>
<td>간접공사비 중 이윤 등 제경비 항목에 대해 최저한도로 기재하거나 누락시키는 경우가 발생</td>
<td>한국건설산업연구원</td>
</tr>
<tr>
<td>예정가격과 낙찰률의 연쇄적인 하락구조</td>
<td>저가낙찰이 성행하는 상황에서는 계약단가가 현실성이 없는 가격으로 구성, 실적공사비 단가는 지속적으로 낮아질 수밖에 없음</td>
<td>적정공사비 산출을 위한 실적공사비 적산제도 개선방안에 관한 연구(박신, 2000)</td>
</tr>
</tbody>
</table>

2.2 건설업 임금실태 조사보고서(시중노임단가)

건설업 임금실태 조사 보고서는 '국가나 지방자치 단체를 당사자로 하는 계약'을 대상으로 건설공사의 원가 상정 기초 자료 제공을 목적으로, 대한 건설협회는 통계법 제17조에 의거, 매년 2차례 건설업 임금실태 조사를 통해 시중추임금 자료를 공표하고 있다.

대상 현장과 조사 직종의 표본 수는 1990년 통계작성승인을 시작으로 2008년 전국의 2,000개 건설현장과 조사직종 117개로 조정 적용되고 있는데 이들의 임금실태를 자계식 우편·인터넷 조사와 타계식 현장실사를 병행 실시하여 조사한 후 직종별 평균임금을 산출한다.

• 조사현장이 20개 이상인 경우 : 1차 평균금액의 3배를 벗어나는 임금은 제거함
• 조사현장이 5개 이상, 20개 미만인 경우 : 1차 평균금액의 2배를 벗어나는 임금은 제거함
• 조사현장이 5개 미만인 경우 : 단순평균 산술함

3. 실적공사비 단가와 시중노임단가의 비교 · 분석

3.1 실적공사비 단가와 시중노임단가 비교

3.1.1 노무중심공정 선별

실적공사비 단가와 시중노임단가 비교를 위해 우선 노무중심공정을 선별이 선행되어야 한다. 재료비, 노무비, 경비의 분리단가를 적용하여 직접 공사비를 산정하는 표준품셈과 달리 실적공사비 단가는 재료비, 노무비, 경비의 합계액으로 구성된다.
시계열분석을 통한 실적공사비의 노무비 분석 및 예측에 관한 연구

표 3. 노무중심 공사 및 해당기능의 직종

NO	공종분류	공종코드	공종명칭	구역	노무 비율	해당 기능의 직종	대금비용
1	A020	A020.41000	송장 및 감독비	수량구중물 (기축중물)	90%	시공종사	86,978
2	A020	A020.42000	송장 및 감독비	수량구중물 (기축중물)	90%	시공종사	95,897
3	B000	DB000.20000	설계감독비	설계감독비 (설계감독)	97%	설계감독	86,508
4	B000	DB000.21000	설계감독비	설계감독비 (교육감독)	96%	설계감독	89,016
5	B000	DB000.26000	설계감독비	설계감독비 (교육감독)	96%	설계감독	68,369
6	D000	DP00.10000	변호사	변호사	100%	변호사	92,646
7	D000	DP00.10000	변호사	변호사	100%	변호사	92,995
8	D000	DP00.10000	변호사	변호사	100%	변호사	70,723
9	D000	DP00.10000	변호사	변호사	100%	변호사	70,723
10	D000	DP00.10000	변호사	변호사	100%	변호사	70,723
11	D000	DP00.10000	변호사	변호사	100%	변호사	70,723
12	D000	DP00.10000	변호사	변호사	100%	변호사	70,723
13	D000	DP00.10000	변호사	변호사	100%	변호사	70,723

시중노무임액과 해당공정의 실적공사비용의 변화를 나타낸 것이다.

두 단기의 변화를 확인하고, 비교하는 것을 목적으로 실적공사
비 제도가 도입된 2004년 단기를 기준으로 해당단기의 단기를
비교한 단가지수와 천년대비 등락률(%)을 표시하였다.

- 단가지수 = \frac{\text{해당단기의 단가}}{\text{2004년단기의 단가}} \times 100

- 등락률(%) = \frac{\text{해당단기의 단가} - \text{전년도 단가}}{\text{전년도 단가}} \times 100

표 4. 시중노무단가 & 실적공사비용 (2004 ~ 2012)

<table>
<thead>
<tr>
<th>직종</th>
<th>연도</th>
<th>시중노무단가</th>
<th>실적공사비</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>단가</td>
<td>단가</td>
<td>단가</td>
</tr>
<tr>
<td></td>
<td>지수</td>
<td>지수</td>
<td>지수</td>
</tr>
<tr>
<td>철근공</td>
<td>2004</td>
<td>67,338</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>66,038</td>
<td>97.9</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>65,059</td>
<td>94.6</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>65,657</td>
<td>103.0</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>68,369</td>
<td>102.0</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>65,654</td>
<td>98.6</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>65,654</td>
<td>98.6</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>67,707</td>
<td>101.0</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>69,662</td>
<td>103.0</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>74,978</td>
<td>111.0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>78,732</td>
<td>117.0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>70,723</td>
<td>118.0</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>80,106</td>
<td>121.0</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>89,016</td>
<td>123.0</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>88,702</td>
<td>123.0</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>80,740</td>
<td>127.0</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>89,016</td>
<td>123.0</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>95,613</td>
<td>123.0</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>80,508</td>
<td>101.0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>84,806</td>
<td>106.0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>80,740</td>
<td>106.0</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>80,740</td>
<td>106.0</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>80,740</td>
<td>106.0</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>89,016</td>
<td>123.0</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>89,016</td>
<td>123.0</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>89,016</td>
<td>123.0</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>89,016</td>
<td>123.0</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>60,253</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>60,253</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>60,253</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>60,253</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>60,253</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>60,253</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>60,253</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>60,253</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>60,253</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>60,253</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>60,253</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>60,253</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>60,253</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>60,253</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>60,253</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>60,253</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>60,253</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>60,253</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>연도</th>
<th>시중노임단가</th>
<th>실적공사비단가</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>82,019</td>
<td>35,715</td>
</tr>
<tr>
<td>2005</td>
<td>83,397</td>
<td>36,499</td>
</tr>
<tr>
<td>2006</td>
<td>84,644</td>
<td>37,054</td>
</tr>
<tr>
<td>2007</td>
<td>85,976</td>
<td>37,467</td>
</tr>
<tr>
<td>2008</td>
<td>87,319</td>
<td>37,878</td>
</tr>
<tr>
<td>2009</td>
<td>88,863</td>
<td>38,280</td>
</tr>
<tr>
<td>2010</td>
<td>90,307</td>
<td>38,684</td>
</tr>
<tr>
<td>2011</td>
<td>91,851</td>
<td>39,085</td>
</tr>
<tr>
<td>2012</td>
<td>93,395</td>
<td>39,489</td>
</tr>
</tbody>
</table>

3.2 실적공사비 단가 & 시중노임단가 분석

3.2.1 연도별 평균 단가 비교

연도별 평균 단가 비교를 위해 노무중심 공정의 실적공사비와 해당 기능공 시중노임단가의 지수화하여 다음의 표 5와 그림 4에 표시하였다. 단가지수는 실적공사비가 도입된 2004년 대비 해당년도 단가의 증감률을 의미한다.

2004년 상반기를 기준으로 2012년 노무중심 공정의 시중노임단가는 24.8% 증가한 것으로 나타났으며 반면, 실적공사비는 동일기간에 14.35% 증가한 것으로 나타나고 있다.

표 5. 2004년 상반기 대비 연도별 변동률 비교(평균)

<table>
<thead>
<tr>
<th>연도</th>
<th>04 상</th>
<th>04 하</th>
<th>05 상</th>
<th>05 하</th>
<th>06 상</th>
<th>06 하</th>
<th>07 상</th>
<th>07 하</th>
</tr>
</thead>
<tbody>
<tr>
<td>시중노임단가지수</td>
<td>100.0</td>
<td>100.0</td>
<td>100.3</td>
<td>100.3</td>
<td>100.5</td>
<td>100.5</td>
<td>100.3</td>
<td>100.3</td>
</tr>
<tr>
<td>실적공사비단가지수</td>
<td>100.0</td>
<td>103.7</td>
<td>105.3</td>
<td>102.9</td>
<td>105.5</td>
<td>105.5</td>
<td>102.4</td>
<td>102.4</td>
</tr>
</tbody>
</table>

노무비를 중심으로 실적공사비의 현실화 수준을 확인하고 변동 추이를 알아보기 위해 그림 5를 통해 연도별 실적공사비 단가와 시중노임 단가간의 격차를 비교하였다.

그림 3. 2004년 상반기 대비 연도별 변동률 (평균)

그림 4. 시중노임 단가 지수 - 실적공사비 단가지수
그 결과 2007년 상반기 이후 시중노임 단가의 증감률이 실적공사비 단가의 증감률보다 큰 것으로 나타나고 있으며 그 격차 역시 서서히 증가하는 것으로 나타나고 있다. 이를 통해 실적공사비 단가와 시장의 실질 노무비 간에 격차가 존재하며, 그 격차 역시 증가하고 있음을 확인할 수 있다.

3.2.2 개별 직종의 단가 비교
개별 직종에 대한 단가 변동 추이를 알아보기 위해, 표4를 바탕으로 시공측량사, 철근공, 미장공, 견출공, 조적공의 시중 노임단가와 각 직종에 해당하는 공정의 실적공사비 단가를 비교해 보았다.

견출공의 경우, 그림7에 나타난 바와 같이 실적공사비 제도가 도입된 2004년 상반기 이후 5년간은 각 단가간 유사한 증감형태를 유지하다가, 2009년 하반기를 기점으로 시중노임단가의 증감률이 크게 유지되고 있는 것을 알 수 있다.

철근공과 미장공의 경우에도 시공측량사와 비슷한 형태를 보이며, 그림7,8에 나타난 바와 같이 각각 2006년 하반기와 2007년 상반기를 기점으로 시중노임단가의 증감률이 실적공사비 단가의 증감률보다 크게 유지되어 현재까지 이어지고 있음을 알 수 있다.

그림 5. 2004년 상반기 대비 연도별 변동률 (시공측량사)

그림 6. 2004년 상반기 대비 연도별 변동률 (견출공)

그림 7. 2004년 상반기 대비 연도별 변동률 (철근공)

그림 8. 2004년 상반기 대비 연도별 변동률 (철근공) (미장공)

그림 9. 2004년 상반기 대비 연도별 변동률 (조적공)

철근공과 미장공의 경우에도 시공측량사와 비슷한 형태를 보이며, 그림7,8에 나타난 바와 같이 각각 2006년 하반기와 2007년 상반기를 기점으로 시중노임단가의 증감률이 실적공사비 단가의 증감률보다 크게 유지되어 현재까지 이어지고 있음을 알 수 있다.

견출공의 경우, 그림7에 나타난 바와 같이 실적공사비 제도가 도입된 2004년 상반기 이후 5년간은 각 단가간 유사한 증감형태를 유지하다가, 2009년 하반기를 기점으로 시중노임단가의 증감률이 크게 유지되고 있는 것을 알 수 있다.

철근공과 미장공의 경우에도 시공측량사와 비슷한 형태를 보이며, 그림7,8에 나타난 바와 같이 각각 2006년 하반기와 2007년 상반기를 기점으로 시중노임단가의 증감률이 실적공사비 단가의 증감률보다 크게 유지되어 현재까지 이어지고 있음을 알 수 있다.

견출공의 경우, 그림7에 나타난 바와 같이 실적공사비 제도가 도입된 2004년 상반기 이후 5년간은 각 단가간 유사한 증감형태를 유지하다가, 2009년 하반기를 기점으로 시중노임단가의 증감률이 크게 유지되고 있는 것을 알 수 있다.

다만, 조적공은 그림9에 나타난 바와 같이 이전의 4개 직종과 달리 시중노임단가 대비 실적공사비의 증감률이 크게 유지되고 있는 것을 알 수 있다.
실적공사비단가와 시중노임단가를 분석한 결과, 조사 대상 직종인 시공측량사, 철근공, 미장공, 건설공, 조적공의 5개 직종 중 조적공을 제외한 4개 직종의 시중노임단가 증감률이 2007년을 기점으로 실적공사비 단가의 증감률 보다 크게 유지되어 현재까지 이어지고 있음을 알 수 있다.

이는 실적공사비 단가가 노무비를 현실적으로 반영하지 못하고 있음을 의미하며, 그로인해 건설업계의 노무비 부담이 가중될 수밖에 없을 것이다.

2008년 한국노동연구원에서 발표한 건설업 전체 취업자 대비 외국인 취업자의 비중은 표 6에서 나타나듯, 실적공사비가 도입된 2004년부터 2006년까지 5%내외를 유지하다 2007년 상반기 기준으로 상승하여 08년 상반기에는 9.3%에 달하니, 표 7에서 알 수 있듯이 숙련공 1인당 보조공의 수 역시 2007년을 기점으로 급격하게 감소하고 있다.

이러한 변화의 원인은 실적공사비 제도의 도입에서만 찾을 수는 없겠지만, 상대적으로 저렴한 외국인 근로자의 증가와 필수 기능인력을 제외한 보조공 수의 감소가 모두 실적공사비가 노임단가보다 낮아진 2007년을 기점으로 발생하고 있다는 점에서 시사하는 바가 크다고 할 수 있다.

4. 시계열 분석 및 예측

4.1 시계열 분석

시계열 데이터를 통해서 순차적으로 발생한 관측치의 집합으로서 시계열 분석을 하며 예측을 위해 가장 중요한 것은 모형 설계이다. 이 때 모형이란, 시계열 데이터의 증가, 감소 등의 주변 혹은 시간에 따른 반복성이 있는지를 파악하고, 나아가 예측에 활용하기 위한 것이며, 이를 할 수 있다.

4.2 ARIMA(Auto – Regressive Integrated Moving Average model) 모형

시계열데이터의 분석방법은 시계열의 구성요소인 추세, 순환, 계절적, 불규칙 변동이 어떻게 변동하는지에 따라서 회귀분석모형, 지수평활모형, 그리고 ARIMA모형에 의한 방법론으로 복합적 예측이 가능하다.

ARIMA 모형의 시계열 분석은 그림 10과 같은 순서로 진행하였다.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>외국인 근로자수</td>
<td>86</td>
<td>88</td>
<td>75</td>
<td>89</td>
<td>101</td>
<td>106</td>
<td>110</td>
</tr>
<tr>
<td>비중</td>
<td>5.2%</td>
<td>5.0%</td>
<td>4.1%</td>
<td>4.9%</td>
<td>5.5%</td>
<td>5.7%</td>
<td>7.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>건설업 전년 종주자주</td>
<td>1737</td>
<td>1737</td>
<td>1766</td>
<td>1767</td>
<td>1697</td>
<td>1666</td>
<td>1825</td>
</tr>
<tr>
<td>숙련공</td>
<td>134</td>
<td>123</td>
<td>125</td>
<td>123</td>
<td>130</td>
<td>141</td>
<td>148</td>
</tr>
<tr>
<td>보조공</td>
<td>1098</td>
<td>1038</td>
<td>1047</td>
<td>1053</td>
<td>922</td>
<td>966</td>
<td>922</td>
</tr>
<tr>
<td>숙련공과의</td>
<td>8.1%</td>
<td>8.4%</td>
<td>8.4%</td>
<td>8.1%</td>
<td>8.4%</td>
<td>8.7%</td>
<td>8.2%</td>
</tr>
</tbody>
</table>

4. 시계열 분석 및 예측

4.1 시계열 분석

시계열 데이터를 통해서 순차적으로 발생한 판촉치의 집합으로서 시계열 데이터를 관리한 사설을 연속된 판촉치는 서로 관련이 있다고 기대되는 데이터를 말한다. 예를 들면, 주가지수, 연간 GNP, 월간 강수량 등이 대표적인 시계열 자료이며, 국가 경제활동 및 기업 경영활동 등의 사회 전반에 활용되고 있다.

일반적으로 시계열분석은 미래예측을 위해 주로 활용되며 예측을 위해 가장 중요한 것은 모형 설계이다. 이 때 ARIMA 모형은 시계열 데이터의 증가, 감소 등의 주변 혹은 시간에 따른 변동성이 있는지를 파악하고, 나아가 예측에 활용하기 위한 것이며, 이를 할 수 있다.

4.2 ARIMA(Auto – Regressive Integrated Moving Average model) 모형

시계열 데이터의 분석방법은 시계열의 구성요소인 추세, 순환, 계절적, 불규칙 변동이 어떻게 변동하는지에 따라서 회귀분석 모형, 지수평활모형, 그리고 ARIMA모형(Heteroskedasticity-Adjusted Model)에 의한 방법론이 가능하다.

ARIMA 모형의 시계열 분석은 그림 10과 같은 순서로 진행하였다.

<table>
<thead>
<tr>
<th>모형</th>
<th>특성</th>
</tr>
</thead>
<tbody>
<tr>
<td>회귀모형</td>
<td>시계열의 구성요소가 시간에 의존하지 않는 상수일 경우</td>
</tr>
<tr>
<td>지수평활모형</td>
<td>시계열의 구성요소가 시간에 의존하여 느리게 변동할 경우</td>
</tr>
<tr>
<td>ARIMA 모형</td>
<td>시계열의 구성요소가 시간에 따라 매우 빠르게 변동할 경우</td>
</tr>
</tbody>
</table>

본 연구에서는 시계열 데이터의 특성, 형태, 분석의 용이성을 고려하여 ARIMA 모형을 분석 방법으로 선택하였다. ARIMA 모형은 확률시계열 모형으로 시간에 종속된 시계열 자료의 특성을 충분히 고려한 방법이며, 비교적 정확한 예측모델 구축이 가능하다.

ARIMA 모형의 시계열 분석절차는 그림 10과 같은 순서로 진행하였다.
4.2.1 시계열 데이터의 특성과약
시계열 분석 모형을 정하는데 가장 영향을 미치는 요인은 시계열 데이터의 유형이다. 이는 규칙 변동과 불규칙 변동으로 나눌 수 있는데, 규칙 변동은 추세변동, 순환변동, 계절변동으로 다시 세분할 수 있다.
- 추세요인: 평균치의 장기적인 변화
- 계절요인: 일회/기간별 변화
- 순환요인: 계절변동 이외의 주기적 변화
- 불규칙 요인: 시계열의 갑작스런 변화
또한 자기상관함수 그래프를 통해 시계열 데이터의 특성을 증명할 수 있는데, 일반적으로 원시계열의 자기상관 함수 그래프가 점차 감소하면 추세성이 존재하고, 주기적으로 특정 시차에서 커져서 계절성이 존재하는 것으로 볼 수 있다.

4.2.2 시계열 데이터 정상화
시간의 흐름에 의존하는 즉 추세가 있는 비정상시계열은 적절한 조정을 통해 정상시계열 데이터로 변환하는 과정이 필요하다. 원시 데이터의 특성을 정확히 파악하기 위해서는 추세에 따른 변동성을 제거하고, 데이터의 분산을 안정화시켜 반복적인 조정을 통해 계절성이 존재하는 것으로 수용할 수 있다.

4.2.3 모형 식별
ARIMA모형은 ARIMA(p, d, q)로 식별되는데 d는 정상시계열로의 변환하기 위해 차분한 차수가 되고, p와 q값은 자기상관함수와 부문자의 자기상관함수 그래프를 통해 결정한다.

4.2.4 검증 및 예측
식별된 모형이 주어진 시계열자료에 잘 적합하는지 알아보기 위해 잔차분석과 과다적합진단을 수행한다. 이를 통해 모형이 적합한 것으로 판정되면 이 모형을 예측에 사용하지만, 적합하지 않는 것으로 판정되면 모형의 식별단계로 다시 돌아간다.

4.3 실적공사비단가와 노임단가 격차 예측
1) 시계열분석을 위한 연도별 실적공사비 단가와 노임단가 간의 격차는 그림11과 같으며 이를 통해 2004년 상반기부터 2012년 상반기까지 상승과 하락을 반복하며 구조적으로 증가하는 추세를 나타내고 있음을 알 수 있다.

2) 2004년 상반기부터 2012년 상반기까지의 실적공사비 단가와 노임단가 격차의 시계열 데이터의 계절성을 없애기 위해 1차 차분을 통해 정상시계열로 변환한다. 그리고 이를 통해 그래프를 통해 ARIMA 모형을 식별한다.
3) 앞선 과정을 통해 ARIMA(1,1,1)을 모형으로 선행하고 이를 시계열 분석에 적용한 결과 R제곱이 0.959로, 신뢰도는 95.9%가 나왔다.
향후 실적공사비 자료가 지속적으로 축적되어 장기간의 자료를 바탕으로 시계열분석을 실시한다면 격차에 대한 예측 및 변동패턴의 신뢰성을 더욱 높일 수 있을 것이다.
4) 2004년 상반기부터 2012년 상반기까지의 실적공사비 단가와 시중노임단가 격차데이터를 분석한 결과 일정한 주기를 띄어 계절성이 발견되진 않았지만 점차 증가하는 추세성을 도출할 수 있었고 이를 통해 2012년 이후 실적공사비지수와 노임단가의 격차가 매년 1.75% 증가하는 것을 확인할 수 있었다.

5. 결론
2004년부터 정부는 첫째, 무분별한 저가입찰을 방지하고, 둘째, 기술 경쟁에 의한 적정 시장 가격을 반영하고, 셋째, 효율적인 계약관련 업무를 추진하는 것을 목적으로 실적공사비 제도를 도입·시행하고 있다. 하지만 실적공사비 제도의 도입이 낙찰단가 하락에 의한 정부의 예산 절감에만 기여할 뿐, 시장적인 시장가격을 반영하고 있지 못하고 있다는 우리의 목소리 또한 꾸준히 제기되고 있는 실정이다.
낙찰단가 하락에 의한 일반건설업체의 비용부담은 전문건설업체로 전가되며 최종적으로 건설노동자의 임금으로 이어질 가능성이 크다. 따라서 시장가격이 반영되지 않은 단가의 형성은 험호적으로 건설노동시장의 해극을 불러와 건설업 전반에 걸쳐 심각한 문제를 야기할 가능성 크다고 할 수 있다.
이에 본 연구에서는 실적공사비용 및 해당 기능공의 시중노임단가의 비교를 통해 노무비를 중심으로 실적공사비의 현실화 수준을 확인하고, 시계열 분석을 통해 변화를 분석하였다.
본 연구를 통해 도출된 결론은 다음과 같다.
1) 노무비의 비중이 95% 이상인 노무중심 공정의 실적공사비와 해당 기능공의 시중노임단가를 비교한 결과, 2012년 상반기의 시중노임단가는 2004년 상반기 대비 24.83% 증가한 반면, 동일기간에 실적공사비용은 14.35% 증가하는 것에 그치고 단가간 격차가 10.48%에 이르는 것으로 나타나고 있다.
2) 조사 대상 직종인 시공측량사, 철근공, 미장공, 건축공, 조적공의 5개 직종 중, 조직공을 제외한 4개 직종의 시중노임단가 증가율이 2006년에서 2009년 사이를 기준으로 실적공사비 단가의 증가율보다 크게 유리되어 현재까지 이어지고 있다.
3) ARIMA 모형을 통한 시계열 분석 결과, 두 단가간의 격차를 격차는 매년 증가하여 2015년에는 15.75%에 이르는 것으로 분석되고 있다.
이는 실적공사비 단가가 노무비를 현실적으로 반영하지 못하고 있으며, 시간이 경과와 더불어 그 격차가 더욱 증가하여, 건설업계의 노무비 부담이 가중 될 수밖에 없음을 의미한다. 특히, 골조공사 등 노무중심공정에 있어, 시간가격이 반영되지 않은 낙찰단가의 실질적 하락은, 외국인 근로자 수의 증가, 기능공 대비 보통 민부 수의 증가 등 노무 환경의 변화를 가속화하고, 입금체불, 업체부도 등 건설근로자의 직접적인 피해로 이어질 수 있기에 적절한 보정을 통해 실적공사비 단가를 현실화 하고 보완할 수 있는 제도적 개선이 요구된다.

본 연구의 결과는 현행 실적공사비 제도의 문제점을 해결하고, 개선방안을 수립하기 위한 기초 자료로 활용될 수 있을 것으로 판단된다.

참고문헌

김승직·김태희·민경석·김옥규·김찬규 (2007). “공사실적정보 DB구축을 통한 원가정보 활용방안”, 정기학술발표대회 논문집, 제7권, 한국건설관리학회, pp. 495~498
김원태·최석인·이복남 (2010). “건설공사 공사비 산정 방식의 합리적 개선방안”, 한국건설산업연구원 연구 보고서
남하나 (2007). “웨이블릿 변환을 이용한 건설공사비지수 시계열분석에 관한 연구”, 연세대학교 석사학위논문
박신·조성학·김진호·안용선 (2000). “적정공사비 산출을 위한 실적공사비 산출제도 개선방안에 관한 연구”, 대한건축학회지, 제2권 제3호
박원영·서종원·강상혁·최봉준 (2009). “시계열을 이용한 실적단가 예측방법에 관한 연구”, 한국건설관리학회 논문집, 제10권 제4호, 한국건설관리학회, pp. 50~57
윤우성·고성석 (2011). “공공주택 실적공사비 분석을 통한 공사비 리스크에 관한 연구”, 한국건설관리학회 논문집, 제12권 6호, 한국건설관리학회, pp. 65~78
정기창·김영애·김용수 (2008). “물가변동에 따른 실적공사비 등락률 산출의 문제점 및 개선방안”, 정기학술발표대회 논문집, 제8권, 한국건설관리학회 pp. 541~546
정문범·한태현 (2001). “SPSS를 활용한 시계열 자료와 단순화 분석”, SPSS 사용자매거, pp. 4~8
조희희·박우현·강경민·장정인 (2002). “건축공사비지수의 통계적 예측모델 개발 연구”, 대한건축학회지, 제18권 제3호, pp. 125~132
최석인·송방관·김윤주 (2004). “실적공사비 제도의 평가 및 개선방안”, 한국건설산업연구원 연구 보고서

논문제출일: 2012,10,05
논문심사일: 2012,10,12
심사완료일: 2013,05,07
요 약

2004년부터 정부는 무분별한 저가입찰을 방지하고, 기술 경쟁에 의한 적정 시장 가격 반영 및 효율적인 계약관련 업무를 추진하는 것을 목적으로 실적공사비 제도를 도입 시행하고 있다. 하지만 실적공사비 제도의 도입이 낙찰단가 하락에 의한 정부의 예산 절감에만 기여한 뿐, 실질적인 시장가격을 반영하고 있지 못하고 있다는 우려의 목소리 또한 꾸준히 제기되고 있는 실정이다. 낙찰단가 하락에 의한 일반건설업체의 비용 부담은 전문건설업체로 전가되며 최종적으로 건설노동자의 피해로 이어질 가능성이 크기 때문에, 실적공사비에 적정 가격을 반영하고 현실화하는 것은 성공적인 실적공사비 제도의 정착에 매우 중요한 요소이다. 따라서 본 연구는 노무비를 중심으로 노무중심공정을 도출하고 이들의 실적공사비단가와 해당 기능공의 시중노임단가를 비교하여 실적공사비의 현실화수준을 파악하고, 시계열분석을 통해 변화를 분석하고 예측하였었다. 시장가격이 반영되지 않은 낙찰 단가의 실질적 하락은 노무 환경의 변화를 가속화하고, 임금체불, 업체부도 등 건설근로자의 직접적인 피해로 이어질 수 있기 때문에 본 연구가 현행 실적공사비 제도의 문제점을 해결하고, 개선방안을 수립하기 위한 기초 자료로 활용될 수 있을 것으로 기대된다.

키워드: 실적공사비, 건축공사비지수, 노무비, 시계열분석, 현실화 수준, ARIMA