로봇 프로그래밍 교육에서 웹2.0 도구의 활용 모형
전재천*, 유인환**
대구 학남초등학교*・대구교육대학교 컴퓨터교육과**

요 약
인터넷 서비스는 개방, 공유, 참여의 성격을 보유하여 인터넷 환경에서 사용자가 적극적으로 참여하는 형태로 변화하고 있다. 본 연구에서는 이러한 호류에 흡입하여 기존의 로봇 프로그래밍 교육을 바탕으로 웹2.0 환경에 부합하는 창조적인 상호작용을 촉진하기 위한 교육모형을 제안하였다. 우선 웹2.0의 기반의 독성과 이를 구현할 수 있는 교육적 도구에 대해 고찰하였고, 지금까지 연구되어 온 로봇 교육 및 로봇 프로그래밍 교육과 학습모형에 대해 살펴보고, 시사점을 도출하였다. 또한 온라인 상호작용을 촉진할 수 있도록 웹2.0 도구(씨어코드, prezi, mindmeister)를 활용한 교육모형을 구현하고 이를 학습자에게 적용해보고 있다. 본 연구 결과 웹2.0 기반의 도구를 활용한 로봇 프로그래밍 교육이 유의미하다는 결과를 얻을 수 있었으며, 참여한 학습자 대부분은 웹2.0의 도구를 활용하는 것이 로봇 프로그래밍 과정 전반에 도움이 되었다고 평가하였다.

키워드 : 웹2.0, 로봇 프로그래밍

The Instructional Model for Robot Programming Using Web2.0 Tools

Jaecheon Jeon*・Inhwan Yoo**
Daegu Hagnam Elementary School*・
Dept. of Computer Education, Daegu National University of Education**

ABSTRACT
Modern internet service is characterized as opening, sharing and participation based on Web2.0 so that users might actively participate in the internet environment. In this study, we suggested an instructional model based on precedent model of robot programming to promote positive interaction in Web2.0 environment. First, we figured out implications of precedent research through review the environmental features of Web2.0 and educational tools, robot programming learning model. Also, we suggest an instructional model using Web2.0 tools(cyworld, prezi, Mindmeister) for promoting interaction and applied it to learners. As a result, we have acquired positive results of robot programming education using Web2.0 tools. Most participants were evaluated that Web2.0 tool would be helpful to the overall robot programming course.

Keywords : Web2.0, robot programming

교신저자 : 유인환(대구교육대학교 컴퓨터교육과)
논문등재 : 2014-06-15
논문심사 : 2014-06-15
심사완료 : 2014-06-24
1. 서론

교육과과학기술부의 개정교육과정(2000)에서는 시대적 변화에 적응할 수 있는 ‘고보정 정의’의 역할을 수행하기 위해서 기존의 창의적 재능활동 및 특별활동을 ‘창의적 체험활동’으로 통합하게 학생이 학과 중심이 되는 다양한 창의적 교육 활동을 장려하고 있다. 이를 위해 교육 환경은 랜20은 기존으로 하는 정보화시대의 변화를 적극 수용하고 있다. 이는 학습자 중심의 구성주의적 관점의 기반으로 자식의 개발과 고유, 수용, 통합을 기반 자주적이고 능동적인 학습이 이루어졌음을 만한다. 랜20은 사용자들의 개방, 공유, 참여, 협력을 강조한다.는 점에서 구성주의가 지향하는 교육적 모델과 유사한 점이 많다.[12,13]

구성주의에서의 교수-학습은 학습자가 새로운 상황에 능동적으로 대처하여 유익한 문제를 스스로 해결할 수 있는 능력을 키우는 방향으로 이루어져야 한다[1]. 또한 교육 전체에 창의성, 문제해결력, 비판적 사고능력, 의사소통 및 협업 능력 등의 학습역량을 요구하는 사회적 변화에 따라 선택과 사활, 협업, 일부 능력 통합과 같은 학습자의 요구를 수용하여야 한다.

최근 로봇 관련 연구는 로봇이 활용한 교육이 학생들의 논리적 사고력, 창의력, 학습 욕구도 증진에 매우 효과적임을 밝혀냈다. 이러한 강점들을 기반으로 로봇 활용 교육은 랜20 환경에 부합하는 이러한 도구로써 더욱 큰 교육적 성과를 이루어낼 수 있다고 기대된다.

랜20에서 학습자는 개방적이고 원활하게 대변되는 개념을 바탕으로 정보와 지식을 성장, 공유, 소통하는 일련의 과정에 참가하게 된다. 이러한 과정은 사회적 성장의 학습활동이 이루어지는 중에서 기존의 Web기반 학습이 가능한 한계를 보완할 수 있게 된다[10]. 따라서 로봇 프로그래밍 교육을 활성화시킬 수 있는 도구로써 랜20 도구가 기존 가능성을 살펴볼 필요가 있다. 본 연구에서는 로봇 프로그래밍 교육을 활성화시킬 수 있는 방법으로 랜20 도구가 기존 능동적 상호작용에 주목하여 이를 로봇 프로그래밍에 활용하는 학습 모형으로 구성원의 적응해보보고 한다.

2. 관련연구

2.1 로봇 프로그래밍 교육

학교에서는 프로그래밍 경험을 통한 컴퓨터의 처리 과정에 대하여 이해하게 되고 컴퓨터 하드웨어에 대한 수상적인 개념을 정립할 수 있게 된다[5]. 이러한 프로그래밍 교육은 로봇을 활용하여 기존의 프로그래밍 교육의 문제점을 보완하고 로봇프로그래밍 교육이 기존 교육적 효과를 살리본 연구가 나온 구조자에게 있다.

Hood의 연구(2005)는 로봇의 구조를 이용하여 학생들의 학습적 경험을 향상시킨 결과에 대한 연구이다. 이는 로봇의 구조가 학생들의 학습적 경험을 향상시킨 결과에 대한 연구이다. 로봇의 구조를 이용하여 학생들의 학습적 경험을 향상시킨 결과에 대한 연구이다. 로봇의 구조를 이용하여 학생들의 학습적 경험을 향상시킨 결과에 대한 연구이다. 로봇의 구조를 이용하여 학생들의 학습적 경험을 향상시킨 결과에 대한 연구이다.

Hood의 연구(2006)는 대학 입학생들에게 코딩의 기본적인 기술을 교육하기 위한 아이디어를 하고 마인드스포츠를 이용한 교육이 효과가 있음을 입증하였다[14].

신승용의 연구(2009)는 프로그래밍의 개념을 활용한 ‘로봇 게임 프로그래밍’라는 새로운 형식의 학습 방법을 마련하여 이를 학생들에게 적용하여 학교 교육활동에 새로운 가능성을 가지려는 것을 고찰하였다[9].

이상으로 볼 수 있듯이 로봇은 활용한 프로그래밍 교육은 학습자의 프로그래밍 능력과 창조, 논리적인 사고력, 종합적인 영역과 학생들의 과제를 해결하는 데 사용될 수 있다. 그러나 지급까지의 연구 과거는 주로 로봇을 활용한 논리적 사고력, 문제해결력, 학습 성취도 항상과 같은 학습적 영역과 학생들의 과제를 해결하는데 사용하는 데 사용될 수 있다. 이러한 이유로 본 연구에서는 로봇 프로그래밍 교육에 랜20 도구를 활용한 교육모형을 개발하고 교육적 효과를 살펴보기로 한다.

2.2 랜20

언론, 개방, 참여, 공유라는 힘의 기본 특징을 그대로 수행하려는 랜20의 개념은 단순한 웹 사이트의 집합체를 랜1.0으로 보고, 웹 에플리케이션을 제공하는 하나의 완전한 플랫폼으로의 변환을 랜2.0이라고 지칭한다[8].

랜2.0의 가장 두드러진 특징은 사용자에게 힘이 이동
2.3 Social Network Service(SNS)

Social은 '사회'라는 영어에서래 온 것으로 ‘사람들
이 모여 있다’라는 의미를 가진다. 'Network'은 ‘사람들
이 전달의 관계에 의해 모인 관계망’을 의미하는데 이
들의 조합인 'Social Network'은 ‘사람들이 연결되어 있

SNS는 제공하는 기능에 따라 <표 2>와 같이 구분
될 수 있다[7].

<table>
<thead>
<tr>
<th><표 2> Classification of SNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNS 분류</td>
</tr>
<tr>
<td>프로필 기반</td>
</tr>
</tbody>
</table>
| 비즈니스 기반 | 애플리케이션 기반으로 한 전문적인 비
| | 네이버 간호사 소셜 네트워크 서비스 |
| 블로그 기반 | 개인 미디어 블로그를 중심으로 한 소셜 네트
| | 워크, 네이버 블로그 |
| 비디오 | 포토, 동영상, 라디오 등 특정분야의 비디어
| | UCC 중심의 소셜 네트워크 서비스 |
| 비주얼 | 유튜브, 티저, 티저 브로드 |
| 협업 기반 | 공동 창작, 협업 기반의 소셜 네트워크 |
| | 페이퍼리아, 구글플러스, 스페이스토 |
| 키뮤니케이션 중심 | 자료, 멀티, 비디오 전파 HTML 등 사용자 간 키
| | 유니버시아 전달의 소셜 네트워크 서비스 |
| 마이크로블로그 | 햄은 1-3줄의 단문을 서비스할 수 있는 서비스
| | 소셜 네트워크 서비스를 제공하는 서비스 |
| 비디오, 티저, 퀄러적, 플래시싸ун드 |

SNS는 사람 간의 상호작용에 영향을 주며, 시작하면
서 공동체의 개념은 시간이 흐르면서 더 다양한
사람들이 참여하게 되었다. 때문에 이에 대응하는
방법으로 인터넷이 퍼져나가게 되었다. 본 연구에서는
프로필 기반의 사용자에게 다양한 형태의 상호작용을 제공하
는 플랫폼을 활용하여 다양한 형태의 상호작용을 제공하
는 분석을 실시하였다.

2.4 Presentation

프로젝트는 도구 중 하나인 프레젠테이션의 특징은 다
음과 같다[7]. 먼저, 프로젝트는 기업으로 하는 소프트
웨어임. 직접 내용을 프레젠테이션 기반에 기재하기 때문에

사용자의 컴퓨터에 프로그램을 설치할 필요가 없으며 인터넷만 연결이 되면 언제, 어디서나 프레젠테이션 자료를 제작하고 발표할 수 있다.

실제로, ZUI/Zooming User Interface(가능하다. ZUI는 사용자가 시야 영역의 크기를 변경하고 이동하며 여러 개체들을 탐색할 수 있는 그래픽 환경으로 GUI(Graphical User Interface)의 유형 중 하나로 봄 수 있다. ZUI를 통해 학습 내용의 위치와 구조를 변경하여 자료를 제시할 수 있고 학습자의 움직임과 이동 수준에 따라 비정형적인 탐색을 할 수 있기 때문에 학습자의 중심의 교수-학습 매체로 활용될 수 있다.

셋째, 프레지 공유 전점자 기능이다. 프레지는 여기 없이 동시에 접속하여 하나의 컴퓨터 인터넷상 공통으로 프레젠테이션 자료를 만들거나 내용을 공유하는 협동학습을 할 수 있다.

프레지는 거대한 공간의 컨버스의 새로운 아이디어를 제한 없이 창출할 수 있다는 장점도 가지고 있다. 학습자는 여러분의 아이디어를 도출하고 그것을 하나의 주제로 구성하기 위해 협동적 사고로 하게 된다. 이는 기존 프레젠테이션 도구들이 스크립트와 세이지 그리고 영문법 상에서 직관적 현 주로 사용하는 순차적 사고방식과 비교할 수 있다. 또한 Web 브라우저 상에서 작업하고 이들 저장, 공유하는 환경이 학습자 상호간의 협동학습에 큰 장점을 된다.

본 연구에서는 프레지 기기는 역동적, 높은, 인숙성과 같은 특성에 주목하고 학습자들이 편의적인 프로그래밍 하는 작업에 활용하고자 한다.

2.5 Mindmaps

마인드맵은 21세기형 정보 관리 및 활용 기법이며 교사나 학생들의 사고력 신장에 매우 유용한 방법식 사고(radiant thinking)방법이라고 할 수 있다. 1970년대 스프레(Spyry)회사가 발표한 인간의 좌우뇌의 구조와 기능에 관한 연구를 토대로 영국의 Tony Buzan이 발전시켰으며, 영국에서 시작된 마인드 맵 기법은 전 세계로 퍼져 각국 ‘토니 부자 컨설팅’를 중심으로 국가기컨, 기업, 학문 분야에서 폭넓은 적용을 받고 있다.

마인드맵은 통해 학습자는 주제와 관련된 개념들을 향상에 제시함으로써 이해력을 높일 수 있고, 사각적 기호나 그림, 문장 등을 활용한 마인드맵의 노트 방식의 학생들의 창의력과 기억력을 촉진시키며 효과를 높일 수 있다. 또한 학습자는 기억하고 있는 자료들 중 클을 수 있게 조직화하여 직선적 노트보다 정보처리에 더 간단하게 되며 연합, 문장 등의 마인드맵 방식을 통해 강설적인 없이 경제를 이끌어 내고 이를 알고 있는 직관을 효율화, 구조화 할 수 있게 된다.

이러한 장점을 기진 마인드맵은 컴퓨터를 이용해 쉽게 작성 및 저장, 재사용이 가능하게 만들어진 프로그램은 디지털마인드맵 소프트웨어이다. 디지털마인드맵은 ‘마인드맵이 피오르는 복잡한 생각을 티어링테이프 빌드’에 사각화시켜 광범위한 발상을 유도하는 마인드맵령 노르구라고 정의할 수 있다[4].

디지털마인드맵의 특성은 <표 3>과 같다.

<표 3> characteristic of Digital Mindmaps

<table>
<thead>
<tr>
<th>특성</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>시작적 사고의 토구</td>
<td>가짜제거 및 추가, 삭제, 글자 수정이 간단하고 재구성방법이 다양함</td>
</tr>
<tr>
<td>절 이해 용이</td>
<td>원활한 전달로 인해 마인드맵 인체의 한 눈에 인식됨</td>
</tr>
<tr>
<td>관동 작업의 용이</td>
<td>서로 다른 장소에 있는 사람들도 같은 마인드맵 공동체에 직관적 작업함</td>
</tr>
<tr>
<td>브라운 자료 유용</td>
<td>원활한 브라운 자료를 이용한 웹, Web사이트가 가능함</td>
</tr>
<tr>
<td>다양한 형태 변환</td>
<td>필요에 따라 다양한 형태의 파일로 변환할 가능함</td>
</tr>
</tbody>
</table>

본 연구에서는 비교적 단순한 구성으로 작동적이며 초보자도 쉽게 접근할 수 있고 pdf, word, power point 등 여러 형식으로 변환가능하며 팀워크 협업도 가능한 마인드마이스터(Mindmeister)를 활용하였다.

3. 교육 모형 개발

3.1 개발 절차

Web20 기반의 보도 프로그래밍 교육 모형의 개발 절차는 (그림 1)과 같다.
로봇 프로그래밍 교육에서 웹2.0 도구의 활용 모형

(그림 1) The Procedure of Development

수행 목표 본체는 학습자가 로봇에 대해 다양한 프로그래밍 과정의 목표를 설정하고 학습자의 수준을 고려하여 학습 내용에 계획화 및 세분화한다. 선행 로봇 프로그래밍 모형 본체에서는 기존에 개발된 로봇 프로그래밍 과정 모형을 분석하여 웹2.0의 도구를 활용할 수 있도록 이를 정교화, 세분화한다.

웹2.0의 교육적 도구 분석에서는 2.0 환경에서 활용할 수 있는 교육적 도구를 분석하여 각각의 도구가 가지고 있는 특징과 장점을 파악한다. 본 연구에서는 사이드, 프레치, 마인드맵이라는 분석하여 이러한 도구들을 활용할 수 있는 환경을 구성한다. 로봇 프로그래밍 모형 및 교육 프로그램 개발에서는 선행 로봇 프로그래밍 모형 분석과 웹2.0의 교육적 도구를 분석한 결과를 토대로 로봇 프로그래밍 모형을 개발한다. 마지막으로 적응 및 평가 단계에서는 개발한 로봇 프로그래밍 모형에 적용하여 학습 과정을 정리하고 설문을 통해 학습자의 반응을 살펴본다. 작용적으로 전문가 경험을 통합 모형을 정리하고 시사점을 도출한다.

3.2 설계의 기본방향

본 연구에서는 교육모델 설계의 기본 방향을 다음과 같이 설정하였다.

첫째, 웹2.0 기반의 매체의 규모, 개방, 참여를 바탕으로 프로그래밍 모형을 설계한다.

둘째, 웹2.0의 기반환경에 부합하는 교육적인 도구를 사용한다.

셋째, 교육 방법에 있어서 학생들이 개별, 그룹별 활동이 합계하여 이루어지거나 문제해결과정에서 문제점이 발견된 경우 이를 스스로 발견할 수 있도록 한다.

넷째, 프로그래밍 학습의 주된 수단으로 로봇을 사용하고 웹2.0 환경에 부합하는 각종 도구(tool)을 교육적 도구로 활용한다.

다섯째, 학생 상호간의 평가를 통해 피드백 (feedback)이 합계하게 이루어지도록 한다.

여섯째, 프로그래밍 내용 선정은 계획성에 맞춰 단계를 올바르게 선행적으로 길이와 넓이가 더해가도록 조정한다.

3.3 학습활동 설계

웹2.0환경에서 이루어지는 학습은 기존 오프라인에서 이루어지는 학습활동과 많은 차이가 있다. 웹2.0의 특성에 본 연구에서 사용하는 도구들을 적용하여 이루어지는 로봇 프로그래밍 학습활동은 <표 4>와 같이 도출하였다.

<table>
<thead>
<tr>
<th>학습활동</th>
<th>학습방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>프로그래밍 모형 설계</td>
<td>학습자와 학습자간의 경계 소번</td>
</tr>
<tr>
<td>학습활동</td>
<td>학습자와 학습자간의 경계 소번</td>
</tr>
<tr>
<td>학습활동</td>
<td>학습자와 학습자간의 경계 소번</td>
</tr>
<tr>
<td>학습활동</td>
<td>학습자와 학습자간의 경계 소번</td>
</tr>
</tbody>
</table>

3.4 모형의 개발

로봇의 설계, 프로그래밍, 최종 로봇이 목표하는 동작
용 구현하는 코마 경련 일반적인 로봇 프로그래밍 모형을 바탕으로 웹2.0 환경에서 이루어지는 코마의 장점이 살 수 있도록 웹2.0 도구들을 활용할 수 있는 로봇 프로그래밍 모형을 개발하였다. 본 연구에서 제안한 모형은 일반적인 로봇 프로그래밍의 일차적 모형을 바탕으로 웹2.0의 특성을 구현할 수 있도록 설계되었다. 제안한 모형은 <표 6>과 같다.

제안한 모형은 기존의 일반적인 로봇 프로그래밍 과정을 나타내는 일차적 모형을 세분화한 단계를 바탕으로 하고 있다. 또한 웹2.0의 특성을 개발, 참여, 대화, 연결, 피드백으로 설정하고 이에 앞서는 웹2.0 도구들을 활용하였다. 각 학습단계에서 학습자가 수행해야 하는 활동에 앞서는 웹2.0 도구를 프로그래밍 과정에 무대하여 기존 로봇 프로그래밍과는 차별화되는 특성을 가진다.

<표 2.0의 특성> <학습단계> <웹2.0 도구 활용>

| 개발 (Openness) | 학습주체 확인 | • blog를 통한 개발자 분석 과정
| | • 바라기/죄의 표현 |
| 정의 (Participation) | 문제 분석 및 목표설정 | • Mind Map을 통한 생각 경로
| | • blog를 통한 목표 설정 |
| 대화 (Conversation) | 로봇 구조 공유 및 모의 | • SNS를 통한 실시간 공유
| | 고도 제작 |
| 연결 (Connectedness) | 로봇 실험 (설명과 공유) | • SNS를 통한 실시간 공유
| | • Prezi를 통한 프로그래밍 가상 공유 및 설계공유 |
| 피드백 (Feedback) | 피드백 수렴 능력 확인 | • SNS, blog를 통한 상호 피드백
| | 최종 로봇 관리 |

(그림 2) The Instructional Model for Robot Programming Using Web2.0 Tools

4. 모형의 적용과 평가

4.1 모형의 적용

○ ○ 교육대학교 부설 정보미래교육원에서 운영하는 정보미래 1개 연(초등학교 5학년, 6학년)은 대상으로 모형을 적용하였다.

로봇 프로그래밍 수업에서 사용된 교육용 로봇은 LEGO Mindstorms NXT이며 학습자 1명당 1개씩을 사용하였다. 학습자는 로봇에 대한 사전식이 없는 상태에서 로봇을 제작해보고 로봇의 구조를 환동목표에 부합하게 지속적으로 수정, 보완할 수 있도록 하였다. Brick Command Center라는 기반 환경에서 NXT로 그래픽 언어를 사용하였다.

수업은 웹2.0과 원격으로 구성되어 있으며(출석: 9주 ≈ 4시간, 원격: 9주 ≈ 4시간), 출석 수업의 세부 내용은 <표 5>과 같다. 한편, 원격 수업의 내용은 이 출석 수업 내용을 바탕으로 웹2.0 도구를 사용하는 과정으로 구성하였다.

<표 5> The Contents of Robot Programming Using Web2.0 Tools

<table>
<thead>
<tr>
<th>일정</th>
<th>주 제</th>
<th>내용</th>
<th>웹2.0 도구</th>
<th>웹2.0 특성</th>
</tr>
</thead>
<tbody>
<tr>
<td>1주</td>
<td>로봇의 개량 (기본구조)</td>
<td>• 3D프린팅으로 만든 로봇의 구조 및 로봇의 구조</td>
<td>Blog, Mind Map (개별)</td>
<td></td>
</tr>
<tr>
<td>2주</td>
<td>로봇의 형태 이해 (프로젝트)</td>
<td>• SNS를 통한 실시간 공유</td>
<td>Prezi, SNS (개별)</td>
<td></td>
</tr>
<tr>
<td>3주</td>
<td>로봇의 형상 및 모양 (프로젝트)</td>
<td>• SNS를 통한 실시간 공유</td>
<td>Prezi, SNS (개별)</td>
<td></td>
</tr>
<tr>
<td>4주</td>
<td>로봇의 목표를 달성한 모양 (프로젝트)</td>
<td>• SNS를 통한 실시간 공유</td>
<td>Prezi, SNS (개별)</td>
<td></td>
</tr>
<tr>
<td>5주</td>
<td>로봇의 목표를 달성한 모양 (프로젝트)</td>
<td>• SNS를 통한 실시간 공유</td>
<td>Prezi, SNS (개별)</td>
<td></td>
</tr>
<tr>
<td>6주</td>
<td>로봇의 목표를 달성한 모양 (프로젝트)</td>
<td>• SNS를 통한 실시간 공유</td>
<td>Prezi, SNS (개별)</td>
<td></td>
</tr>
</tbody>
</table>
4.1.1 씨앗월드

상호작용의 이라운은 학습 과정에서 학습자들의 학습 동기와 학습 지속성을 저하시키는 요인이 될 수 있다. 본 연구에서는 초등학생들에게 가장 대중화된 소셜 네트워크 서비스인 씨앗월드 미니홈피를 활용하여 다양한 형태의 상호작용을 제공하였다.

우선 사건음의 활동이다. (그림 3)과 같이 사건음에 학습자가 제작한 로봇의 사진을 엽로드하게 했다.

(그림 3) Using Photo Album of Cyworld

이번 시간 로봇을 제작하고 수정·보완한 로봇의 사진을 함께 엽로드하고 이를 학습자간 상호작용을 하도록 했다. 교사는 학습자의 로봇 사진 및 학습자 상호간의 누적된 평가 자료를 수집하여 자료로 활용한다. 학습자는 솔직수업에서 제작한 로봇의 구조를 공동으로 제안받지 않고 확인할 수 있으며 실시간 택팅팅을 통해 자신의 로봇에 대한 다른 학습자들의 역할적인 반응을 살펴볼 수 있게 된다.

게시판에서는 로봇에 관련된 자료(기사, 사진자료, 동영상)을 엽로드하고 자신의 자료 공유로 활용가능하다. 또한 Brick Command Center에서 프로그래밍 한 파일을 저장하여 보관할 수 있다.

프레지의 경우 자신이 원하는 로봇의 대략적인 모양을 그리는 것이 씨앗월드에 대한 사전 개념학습에 활용할 수 있다. 학생들이 로봇를 실사한 후 학생들의 온라인에서 작성한 이기들을 분석하여 SNS를 이용한 로봇교육의 가치를 분석해볼 수 있다.

1종 '파도타기' 기능을 통해 1종로봇을 통해 형성된 학습자들의 미니홈피를 방문하여 학습자와 사이의 상호작용을 할 수 있으며 파도타기를 통해 내려받는 학습자의 학습결과에 손쉽게 접근할 수 있다.

4.1.2 Prezi

프레지를 활용한 협동 프로그래밍을 하기 전 프레지의 특성 및 사용방법을 1차시에 함께 간단하게 교육하였다. 프레지의 핵심적인 빅데이터 기능과 사이의 활용기능(상황, 프레임, Path 지정 및 수정, Colors & Fonts 변경)을 설명하고 심상한 환경의 하루 진행된 주제에 대한 활동을 실시하도록 하였다. 이로 인해 모든 학습자의 독립적으로 명확하게 하기 위해서 (그림 4)와 같이 화면 공간을 분할하게 한다. 학생이 가능하기 때문에 많은 내용을 입력할 수 있다.

(그림 4) The Layout for Cooperative Learning

이러한 데이아웃에서 학습자들은 프레지를 학습 내용을 정리하는 공간이자 발표하는 장으로 사용한다. 학습 내용은 혼자 정리할 수도 있고 동료 학습자와 함께 정리할 수 있다. 이러한 프로그래밍 과정 외에도 로봇에 관련된 사진, 글, 동영상 등의 오브젝트를 삽입하고, 크기를 조정하고, 배치하여 순서를 지정하여 자신
의 포트폴리오를 구축할 수 있다. 학습 후 교사는 이론한 활동내용을 수행방사자료로 활용한다.

교사가 미리 제시해준 힌트 레이아웃 위에 프레지 미팅을 통한 온라인 협업 프로그래밍 활동 모습은 (그림 5)와 같다.

![그림 5] The Cooperative Programming

4.1.3 Mindmeister

중등학교 1학년의 학습자 스스로 규명자료를 고려해보고, 다음은 마인드맵 중 마인드마이어의 사용법을 이는 소양교육을 실시하였다.

초등학교 5학년의 학습자 스스로 규명자료를 고려해보고, 다음은 마인드맵 중 마인드맵의 사용법을 이는 소양교육을 실시하였다.

 먼저, 1학년의 학습자 스스로 규명자료를 고려해보고, 다음은 마인드맵 중 마인드맵의 사용법을 이는 소양교육을 실시하였다.

포트폴리오의 활동 내용을 하면, 마인드맵을 활용하여 프레지 미팅을 통한 온라인 협업 프로그래밍 활동 모습은 (그림 6)와 같다.

![그림 6] The Activities of Mindmeister

으로 나누어서 구성하였다. 자세한 설문 내용은 (표 6)과 같다.

<table>
<thead>
<tr>
<th>영역</th>
<th>문항</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>[질문내용]</td>
</tr>
<tr>
<td>2.</td>
<td>[질문내용]</td>
</tr>
<tr>
<td>3.</td>
<td>[질문내용]</td>
</tr>
<tr>
<td>4.</td>
<td>[질문내용]</td>
</tr>
<tr>
<td>5.</td>
<td>[질문내용]</td>
</tr>
</tbody>
</table>

4.2 모형의 적용 결과 평가

4.2.1 설문지 개발

학생들의 반응을 측정하기 위해 설문지 개발하였는데, 1. 참여가기, 2. 참여가기(개방), 3. 대화하기(의사 소통·연설), 4. 맞춤달기(피드백), 5. 자유형 응답 영역

![표 6] Criteria and Question of Survey

<table>
<thead>
<tr>
<th>영역</th>
<th>문항</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>[질문내용]</td>
</tr>
<tr>
<td>2.</td>
<td>[질문내용]</td>
</tr>
<tr>
<td>3.</td>
<td>[질문내용]</td>
</tr>
<tr>
<td>4.</td>
<td>[질문내용]</td>
</tr>
<tr>
<td>5.</td>
<td>[질문내용]</td>
</tr>
</tbody>
</table>
본 설문을 통해 휴20도구를 각각의 목적에 부합하게 활용하였는지를 확인하고 이러한 활동이 자신의 프로그래밍 과정에 긍정적인 영향을 주었는지 학생들의 반응을 살펴보았다.

4.2.2 결과 분석 및 논의

본 연구자가 제시한 설문지를 활용하여 학생들의 반응 및 학습 결과를 분석해보았다. 설문 응답은 라이커 스케일(Likert scales)을 사용하여 ①매우 그렇다 ②그렇다 ③보통이다 ④그렇지 않다 ⑤전혀 그렇지 않다로 구분하였다. 이 척도를 5점 만점의 점수로 계산하여 설문 항 목별로 평균 점수를 구한 후 표로 작성하여 점수가 1.0 미만이면 매우 부정적, 1.0 이상 2.0 미만이면 중립적, 2.0 이상 3.0 미만이면 보통, 3.0 이상 4.0 미만이면 긍정적, 4.0 이상이면 매우 긍정적인 것으로 판단하였다.

학생들은 참여하기 영역의 미니홈피 사용에 관해서 93.7%의 학생이 적극적으로 참여하고 있다고 응답했으 며 81.2% 이상의 학생이 프로그래밍 과정에서 미니홈피 를 사용하는 것이 자신의 로봇 구조 및 프로그램을 개선하는데 도움이 되었다고 응답했다. 또한 휴20도구를 사용하여 로봇 프로그래밍 소스를 공유해본 경험이 있는 학생은 87.5%로 이어진 학생들이 프로그램링 활동에 도움이 된다고 응답한 학생도 81.2%로 휴20도구의 활용이 프로그래밍 전반에 긍정적인 영향 을 미친다고 보았다.

마인드마이스터 마인드맵 과정에서 로봇의 개념에 대한 생각가자기 활동에 대한 긍정적인 응답은 93.7%로 나타났다. 프로그램을 활용한 의견교환 및 의사 소통의 긍정적인 응답은 87.5%로 이러한 활동은 통합 의사소통이 프로그램 과정에 도움이 되었다고 응답하였고 특히 흥미 및 동기유발 같은 정서적 측면의 설문서는 모든 학생(100%)이 긍정적으로 응답하였으며 이는 새로운 도구를 접하면서 느끼는 흥미와 더불어 휴20 환경에서의 의사소통 과정이 매우 흥미로웠음을 나타낸다.

로봇의 영역을 살펴보면 프로그래밍 과정에서 볼 로그나 미니홈피를 이용해서 긍정적인 피드백 반응을 보인 경우는 56.2%이고 부정적인 피드백 반응을 보인 경우는 50.8%에 불과하였다. 이는 로봇 구조 및 프로그래밍 과정에서 학생들의 반응이 다양하고 두드러진 결과를 보았다. 대부분의 학생은 휴20도구를 활용한 로봇 프로그래밍 과정을 긍정적으로 평가하는 것으로 보아 기존 로봇 프로그래밍 과정의 향상을 보완하는 측면에서 휴20도구를 활용한 학습은 긍정적인 것으로 판단한다.

전반적으로 문제는 로봇 프로그래밍 교육과정의 증강 사례에 있어서 대체적으로 긍정적인 의견이다. 개발된 휴20 프로그래밍 교육과정이 시사학적 요구를 만족할 수 있는 방향에 맞추어 설계되어 있으며 기존 로봇 프로그래밍 교육과정을 다른 차별성을 가지고 있다고 판단하였다. 로봇 프로그래밍 교육과정은 휴20의 특성을 최대한 이용하고, 학습자에게 적절한 지원을 제공함으로써, 학습자들이 로봇 프로그래밍에 대한 학습을 즐겁게 하고, 학습자들이 로봇 프로그래밍을 효율적으로 진행하게 되고, 로봇 프로그래밍 교육의 효과를 통합적으로 평가하기 위한 로봇 프로그래밍 운영체계를 설정함으로써 학교-교육수립에 의한 체계적 보완, 학습자들은 자기가 어떤 학습자로, 어떤 학습자로 자극받고, 이는 학습자 스스로를 진정으로 하는 운영체계가 갖추어져야 할 것이다.

5. 결론

휴20도구는 사용자들의 개인, 공유, 참여, 협력을 강조하고 있으며 교육에도 큰 영향을 미치고 있다. 본 연구에서는 휴20도구의 교육적 효과에 초점을 맞추어서 휴20도구를 활용한 로봇 프로그래밍 교육과정을 개발하였으며 새로운 수업 방안으로서의 가능성을 탐색해 보았다.
선형연구 고찰은 통해 학습자의 학습적 상호작용을 촉진할 수 있도록 허.2의 교육적 도구를 활용한 교육활용을 구현하였다. 이 도구를 학습자에게 적용하고 그 결과를 평가하였다. 본 연구에서 제안한 로봇 프로그래밍 교육모형은 통해 기대할 수 있는 효과는 다음과 같다.

첫째, 허.2의 도구를 활용한 프로그래밍 교육은 학습자들의 적극적인 수업참여를 유도할 수 있다. 학습자들은 미니홈피에 스스로 제작한 로봇의 사진과 동영상 을 업로드하고 이를 통해 넷째점(점검)을 맡고, 수업 시간 내에 프로그래밍 과정상의 오류를 해결하여 실습 과정을 완료하였다. 이 때 학습자는 동정적으로 질문을 하며 문제해결을 위해 토론하고 프로그램을 수정하는 과정을 반복하여 좀 더 정교화 된 로봇의 움직임을 구현할 수 있었다.

둘째, 허.2의 도구를 활용한 프로그래밍 교육은 동반 학습자들의 활발한 상호작용을 기대할 수 있다. 학습자 상호작용 과정에서 안내한 학습자들은 프로토콜로 형태로 기록 및 저장이 가능한 학습자들이 수업이 끝난 후에도 복습이 가능하다고 아이디어 공유에도 도움이 되었다. 또한 학습자들이 미니홈피를 열린한 시간 동안 수업하고 영어로 학습 과제들의 저작 및 공유의 장소로 활용할 수 있다. 교사는 미니홈피, 플래그 등을 통해 학습자들의 상호작용 과정을 멀리켜 채택할 수 있는 결과물을 얻을 수 있고 이를 통해 학습자들을 좀 더 깊게 있게 이해하게 될 수 있다.

셋째, 허.2의 활용한 프로그래밍 교육은 기존의 학습계획성을 적극적으로 구현해 줄 수 있는 좋은 방법이 될 수 있다. 또한 학습자들의 학습계획성을 통한 결과 형성의 적극적인 온라인 상호작용을 촉진함으로써 정식적 교감을 통한 리포트(mreport) 형성에 공정적된 영향을 줄 수 있다.

참고문헌

[12] Ju-Hee Yun(2010). The Effects of the SNS-based Peer Tutoring on Academic Achievement in
Learning Programming Class, Master’s Thesis. Graduate School of Education Korea National University of Education.

지지로서

전재현
2005 대구교육대학교(교육학박사)
2013. 8 대구교육대학교 교육대학원
초등컴퓨터교육전공(박사)
2013~현재 대구학함초등학교 교사
 관심분야: 컴퓨터교육, 정보형계, 스마트러닝

e-mail: oldgarden21@naver.com

유인환
2000 한국교원대학교 컴퓨터교육과(교육학박사)
2000~현재 대구교육대학교 컴퓨터교육과 교수
관심분야: 프로그래밍 교육, 로봇