Electrical and Resistance Heating Properties of Carbon Fiber Heating Element for Car Seat

자동차 시트용 탄소섬유 발열체의 전기적 및 저항 발열 특성

  • Choi, Kyeong-Eun (Department of Practical Arts Education, Jeonju National University of Education) ;
  • Park, Chan-Hee (Department of Nano Materials Science and Engineering, Jeonju University) ;
  • Seo, Min-Kang (Korea Institute of Carbon Convergence Technology)
  • 최경은 (전주교육대학교 실과교육과) ;
  • 박찬희 (전주대학교 나노신소재공학과) ;
  • 서민강 (한국탄소융합기술원)
  • Received : 2016.02.19
  • Accepted : 2016.03.18
  • Published : 2016.04.10


In this paper, the electrical and resistance heating properties of carbon fiber heating elements with different electroless Ni-P plating times for car seat were studied. The specific resistance and specific heat of the carbon fibers were determined using 4-point probe method and differential scanning calorimetry (DSC), respectively. The surface morphology and temperature of carbon fibers were measured by scanning electron microscope (SEM) and thermo-graphic camera, respectively. From experimental results, the nickel layer thickness and surface temperature of carbon fibers increased with increasing the plating time. However, the specific heat and specific resistance decreased with respect to the increased plating time. In conclusion, the electroless Ni-P plating could improve the resistance heating and electrical properties of carbon fiber heating elements for car seat.

본 연구에서는 무전해 니켈 도금 시간을 달리하여 제조한 자동차 시트용 탄소섬유 발열체의 발열 및 전기적 특성에 관하여 고찰하였다. 무전해 니켈 도금된 탄소섬유의 비저항 및 비열은 4-point probe method 및 differential scanning calorimetry (DSC)를 이용하여 분석하였으며, 표면 형상 및 표면 온도는 scanning electron microscope (SEM) 및 열화상 카메라를 이용하여 관찰하였다. 실험 결과, 도금시간의 증가에 따라 니켈 도금 두께 및 표면 온도는 증가하였으며, 반면에 비열 및 비저항은 도금시간이 증가함에 따라 감소하였다. 결과적으로 무전해 니켈 도금은 자동차 시트용 탄소섬유 발열체의 저항 발열 및 전기적 특성을 크게 향상시키는 것으로 판단된다.



  1. K. S. Yoo, B. J. Jung. I. H. Jung, and D. H. Hyun, The Researches in the Properties of Heating of High Efficient Nano Surface Heater, J. Manuf. Eng. Technol., 10, 416-420 (2009).
  2. B. J. Han, D. S. Park, and K. W. Koo, Development of Energy-saving Heat Sheet with the Principles of PTC, J. Electric. Eng. Technol., 7, 2053-2054 (2010).
  3. S. C. Kim and D. H. Kim, Analysis for the Thermal Properties of the Electrical Wire according to Overload and Disconnection, J. Korean Soc. Saf., 22, 26-31 (2007).
  4. J. S. Kim, C. Y. Ryu, S. C. Kim, H. T. Oh, J. R. Yuk, and D. W. Kim, The Effects of Electromagnetic Field Emitted by Cellular Phone on Cognitive Function in Human, J. Korean Inst. Electromagn. Sci., 14. 606-615 (2003).
  5. M. S. Hong, K. M. Bea, H. S. Lee, S. J. Park, K. H. An, S. J. Kang, and B. J. Kim, Electromagnetic Interference Shielding Behaviors of Electroless Nickel-loaded Carbon Fibers-reinforced Epoxy Matrix Composite, Appl. Chem. Eng., 22, 672-678 (2011).
  6. J. G. Kim, C. H. Chung, and Y. S. Lee, The Effect of Crystallization by Heat Treatment Electromagnetic Interference Shielding Efficiency of Carbon Fibers, Appl. Chem. Eng., 22, 138-143 (2011).
  7. Z. H. Jin, K. J. Shim, T. W. Kong, H. M. Jeong, and H. S. Chung, A Study on the Temperature and Electrical Characteristics of Carbon Heater, Korean Soc. Power Syst. Eng., 10, 71-76 (2006).
  8. K. Y. Bae, K. S. Lee, J. H. Shin, H. M. Jeong, H. S. Chung, and J. S. Chun, Study on the Heat Generation Characteristics of the Carbon Heating Source with High Temperature, Korean Soc. Mech. Eng., 2, 106-111 (2001).
  9. J. Y. Lee, J. H. Oh, X. P. Yang, and S. K. Ryu, Relationship Between Exothermic Heat and Carbon Contents of Pitch-based Carbon Fiber, Carbon Lett., 10, 202-207 (2009).
  10. K. M. Chu, D. J. Yun, D. O. Kim, H. K. Park, and S. H. Park, Study of Electric Heating Effects on Carbon Nanotube Polymer Composites, Org. Electron., 15, 2734-2741 (2014).
  11. M. S. Kim, K. G. Kong, K. R. Kim, H. W, Park, O. Y. Park, Y. B. Park, M. Y. Jung, S. H. Lee, and S. G. Kim, Experimental and Numerical Study of Heating Characteristics of Discontinuous Carbon Fiber-epoxy Composite, Compos. Res., 26, 72-78 (2013).
  12. M. H. Jee, J. H. Lee, I. S. Lee, and D. H. Baik, Electrical Properties and Heating Performance of Polyurethane Hybrid Nanocomposite Films Containing Graphite and MWNTs, Text. Sci. Eng., 50, 108-114 (2013).
  13. T. J. Kim and D. D. L. Chung, Carbon Fiber Mats as Resistive Heating Elements, Carbon, 41, 2427-2451 (2003).
  14. K. Y. Bae, K. S. Lee, T. W. Kong, H. S. Chung, H. Y. Jeong, and H. T. Chung, A Study on Application of Warm Air Circulator by Using the Carbon Heating Element with Particle Type, Korean Soc. Power Syst. Eng., 7, 31-37 (2003).
  15. K. S. Lee, K. Y. Bea, H. M. Jeong, H. S. Chung, K. Y. Lee, and J. S. Chun, Heat and Electrical Characteristics of Carbon Heating Rod, Kroean Soc. Mech. Eng., 5, 1412-1417 (2002).
  16. C. T. Hsieh, D. Y. Tzou, Z. S. Huang, C. Y. Lee, and J. K. Chang, High Performance Infrared Heaters Using Carbon Fiber Filaments Decorated with Alumina Layer by Microwave-assisted Method, J. Tai. Inst. Chem. Eng., 54, 1-5 (2015).
  17. H. K. Lee, A Study on Evaluation System of Warming Effect Caused by Far-infrared Radiation, PhD Dissertation, Yonsei University, Seoul, Korea (2005).
  18. K. J. Brown, R. Farrelly, S. M. O'Shaughnessy, and A. J. Robinson, Energy Efficiency of Electrical Infrared Heating Elements, Appl. Energy, 162, 581-588 (2016).
  19. B. J. Kim, W. K. Choi, H. S. Song, J. K. Park, J. Y. Lee, and S. J. Park, Preparation and Characterization of Highly Conductive Nickel-plated Glass Fibers, Carbon Lett., 9, 105-107 (2008).
  20. B. J. Kim, W. K. Choi, M. K. Um, and S. J. Park, Effects of Nickel Plating Thickness on Electric Properties of Nickel/Carbon Hybrid Fibers, Surf. Coat. Technol., 205, 3416-3421 (2011).
  21. S. S. Tzeng and F. Y. Chang, Electrical Resistivity of Electroless Nickel Plated Carbon Fibers, Thin Solid Films, 388, 143-149 (2001).
  22. A. E. Zantout and O. I. Zhupanska, On the Electrical Resistance of Carbon Fiber Polymer Matrix Composites, Compos. A, 41, 1719-1727 (2010).
  23. W. D. Chen, Y. Sung, C. P. Chang, Y. C. Chen, and M. D. Ger, The Preparation of Thermo-responsive Palladium Catalyst with High Activity for Electroless Nickel Deposition, Surf. Coat. Techol., 204, 2130-2135 (2010).
  24. D. W. Pyo, S. Y. Eom, Y. S. Lee, and S. G. Ryu, Exothermic Characteristics of PAN-based Carbon Fiber According to High Temperature Treatment, Korean Chem. Eng. Res., 49, 218-223 (2011).
  25. S. J. Jung, Characteristics of Deposits with Various Condition of Electroless Nickel Plating, MS Dissertaion, Chungbuk National University, Cheongju, Korea (2001).
  26. H. Z. Yu and C. V. Thompson, Grain Growth and complex Stress Evolution During Volmer-Weber Growth of Polycrystalline Thin Films, Acta Mater., 67, 189-198 (2014).
  27. W. K. Choi, Preperation and Characterization of Highly Electrically Conductive Carbon Fibers Produced by Ni plating, MS Dissertation, Chungnam National University, Deajeon, Korea (2010).
  28. D. C. Shin and H. G. Woo, A Study on the Electrical Fan Heater using High Efficiency Induction Heating, J. KIIEE, 26, 24-30 (2012).
  29. A. T. Chien, S. B. Cho, Y. Joshi, and S. Kumar, Electrical Conductivity and Joule Heating of Polyacrylonitrile/Carbon nanotube Composite Fibers, Polymer, 55, 6896-6905 (2014).
  30. Y. Jing and G. J. Young, Highly Elastic and Transparent Multiwalled Carbon Nanotube/Polydimethylsiloxane Bilayer Films as Electric Heating Materials, Mater. Des., 86, 72-79 (2015).

Cited by

  1. Conductivity, superhydrophobicity and mechanical properties of cotton fabric treated with polypyrrole by in-situ polymerization using the binary oxidants ammonium Peroxodisulfate and ferric chloride pp.1746-7748, 2019,
  2. 질소가 도핑 된 흑연섬유 발열체의 제조 및 발열특성 vol.28, pp.1, 2017,
  3. 무전해 구리도금 된 흑연 섬유의 발열 특성 vol.55, pp.2, 2017,
  4. 저전력 및 고효율 면상발열체를 위한 피치기반 탄소종이 제조 및 특성 vol.31, pp.6, 2018,
  5. 가지 달린 구조의 폴리실라잔을 전구체로 이용해 제조한 카본 나노튜브/실리콘 카보나이트라이드 복합체 시트의 발열특성에 관한 연구 vol.33, pp.6, 2016,