A Study on Thermal Conductive Acrylic Pressure Sensitive Adhesive with Alumina and Graphite

알루미나와 흑연을 포함하는 열전도성 아크릴 점착제의 연구

  • Oh, Ji Hwan (School of Energy, Materials, Chemical Engineering, Korea University of Technology and Education, Korea University of Technology Education) ;
  • Jang, Sun Ho (School of Energy, Materials, Chemical Engineering, Korea University of Technology and Education, Korea University of Technology Education) ;
  • Yoo, Seong Sik (School of Energy, Materials, Chemical Engineering, Korea University of Technology and Education, Korea University of Technology Education) ;
  • Cho, Ryong (School of Energy, Materials, Chemical Engineering, Korea University of Technology and Education, Korea University of Technology Education)
  • 오지환 (한국기술교육대학교 에너지, 신소재, 화학공학부) ;
  • 장선호 (한국기술교육대학교 에너지, 신소재, 화학공학부) ;
  • 유성식 (한국기술교육대학교 에너지, 신소재, 화학공학부) ;
  • 조을룡 (한국기술교육대학교 에너지, 신소재, 화학공학부)
  • Received : 2017.09.14
  • Accepted : 2017.09.22
  • Published : 2017.09.30


2-Ethylhexyl acrylate, butyl acrylate, methyl methacrylate, and 2-hydroxyethyl methacrylate were polymerized to synthesize acrylic pressure sensitive adhesive (PSA). Alumina and graphite as a filler were added to acrylic PSA to give thermal conductivity. In case of addition of both graphite and alumina, the thermal conductivity of PSA was increased compared with alumina alone due to enhancement of contact between two fillers followed by increasing thermal path in PSA matrix.



Supported by : 한국기술교육대학교


  1. R.J. McGlen, R. Jachuck, and S. Lin, "Integrated thermal management techniques for high power electronic devices", Applied Thermal Engineering, Vol.24, pp.1143, 2004. https://doi.org/10.1016/j.applthermaleng.2003.12.029
  2. Y. Xu, D.D.L. Chung, and C, Mroz, "Thermally conducting aluminum nitride polymer-matrix composites", Composites Part A: Applied Science and Manufacturing, Vol.32, pp.1749, 2001. https://doi.org/10.1016/S1359-835X(01)00023-9
  3. F.T. Tan, X. Qiao, J. Chen, and H. Wang, "Effects of coupling agents on the properties of epoxy-based electrically conductive adhesive", Int. Journal of Adhesion and Adhesives, Vol.26, pp.406, 2006. https://doi.org/10.1016/j.ijadhadh.2005.06.005
  4. Y. X. Fu, Z.X. He, D.C. Mo, and S.S. Lu "Thermal conductivity enhancement with different fillers for epoxy resin adhesives", Applied Thermal Engineering, Vol.66, pp.493, 2014. https://doi.org/10.1016/j.applthermaleng.2014.02.044
  5. J. Y. Choi, S.W. Kim, and K.Y. Cho, "Improved thermal conductivity of graphene encapsulated poly(methyl methacrylate) nanocomposite adhesives with low loading amount of graphene", Composites Science and Technology, Vol.94, pp.147, 2014. https://doi.org/10.1016/j.compscitech.2014.02.005
  6. B. Tang, G. Hu, H Gao, and L. Hai, "Application of Graphene as Filler to Improve Thermal Transport Property of Epoxy Resin for Thermal Interface Materials", Int Journal of Heat and Mass Transfer, Vol.85, pp.420, 2015. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.141
  7. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Tewelderbrhan, and F. Miao, "Superior thermal conductivity of single-layer graphene", Nano Lett. Vol.8, pp.902, 2008. https://doi.org/10.1021/nl0731872
  8. K.M.F. Shahil, and A.A. Balandin, "Graphenemultilayer graphene nanocomposites as highly efficient thermal interface materials", Nano Lett. Vol.12, pp.861, 2012. https://doi.org/10.1021/nl203906r
  9. A. Yu, P, Ramesh, X. Sun, E. Bekyarova, M.E. Itkis, and R.C. Haddon, "Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites", Advanced Materials, Vol.20, pp.4740, 2008. https://doi.org/10.1002/adma.200800401
  10. W. Trabelsi, L. Dhouibi, E. Triki, M.G.S. Ferreira, and M.F. Montemor, "An electrochemical and analytical assessment on the early corrosion behavior of galvanized steel pretreated with aminosilanes", Surface and Coatings Technology, Vol.192, pp.284, 2005. https://doi.org/10.1016/j.surfcoat.2004.04.088
  11. U. R. Cho, J. H. Oh, J H. Kim and H. J. Jung, "A Study on the Synthesis and Properties of Environmental Friendly Pressure Sensitive Adhensive for Manufacturing Electronic Products", Journal of the Semiconductor & Display Techonology., Vol.14, pp.12-16, 2016.
  12. S. K. Back, S. H. Jang and U. R. Cho, "Synthesis of Hard Coating Solution for Plastic Display Plate", Journal of the Semiconductor & Display Techonology., Vol.16, pp.45-51, 2017.
  13. Y. Yamamoto, S. Fujii, K. Shitajima, K. Fujiwara, and Y. Nakamura, "Soft polymer-silica nanocomposite particles as filler for pressure-sensitive adhesives", Polymer, Vol.70, pp.77, 2015. https://doi.org/10.1016/j.polymer.2015.06.006
  14. H. G. Kim, "Effect of Silica Concentration and Crosslinking Agent on Adhesion Properties and Thermal Stability of UV Cured 2-EHA/AA PSAs", Journal of Adhesion and Interface, Vol.16, pp.55-62, 2015. https://doi.org/10.17702/jai.2015.16.2.55
  15. S. A. Meguid, and Y. Sun, "On the Tensile and Shear Strength of Nano-Reinforced Composite Interfaces", Materials and design, Vol.25, pp.289, 2004. https://doi.org/10.1016/j.matdes.2003.10.018
  16. W. Yuan, Q. Xiao, L. Li, and T. Xu, "Thermal conductivity of epoxy adhesive enhanced by hybrid graphene oxide/AlN particles", Applied Thermal Engineering, Vol.106, pp.1067, 2016.
  17. M. A Raza, "Comparison of Carbon Nanofiller-Based Polymer Composite Adhesives and Pastes for Thermal Interface Applications", Materials & Design, Vol.85, pp.67, 2015. https://doi.org/10.1016/j.matdes.2015.07.008
  18. J.P. Hong, S.W. Yoon, T.S. Hwang, J.S. Oh, S.C. Hong, Y.K. Lee, and J.D. Nam, "High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers", Thermochimica Acta, Vol.537, pp.70, 2012. https://doi.org/10.1016/j.tca.2012.03.002
  19. T. Zhou, Wang, P. Cheng, T. Wang, D. Xiong, and X. Wang, "Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticle", Polymer Letters, Vol.7, pp.585, 2013. https://doi.org/10.3144/expresspolymlett.2013.56