Effect of Deposition Parameters on the Morphology and Electrochemical Behavior of Lead Dioxide

  • Hossain, Md Delowar (Departmentof Applied Chemistry and Chemical Engineering, University of Rajshahi) ;
  • Mustafa, Chand Mohammad (Departmentof Applied Chemistry and Chemical Engineering, University of Rajshahi) ;
  • Islam, Md Mayeedul (Department of Chemistry, Rajshahi University of Engineering and Technology)
  • Received : 2017.03.28
  • Accepted : 2017.05.17
  • Published : 2017.09.30


Lead dioxide thin films were electrodeposited on nickel substrate from acidic lead nitrate solution. Current efficiency and thickness measurements, cyclic voltammetry, AFM, SEM, and X-ray diffraction experiments were conducted on $PbO_2$ surface to elucidate the effect of lead nitrate concentration, current density, temperature on the morphology, chemical behavior, and crystal structure. Experimental results showed that deposition efficiency was affected by the current density and solution concentration. The film thickness was independent of current density when deposition from high $Pb(NO_3)_2$ concentration, while it decreased for low concentration and high current density deposition. On the other hand, deposition temperature had negative effect on current efficiency more for lower current density deposition. Cyclic voltammetric study revealed that comparatively more ${\beta}-PbO_2$ produced compact deposits when deposition was carried out from high $Pb(NO_3)_2$ concentration. Such compact films gave lower charge discharge current density during cycling. SEM and AFM studies showed that deposition of regular-size sharp-edge grains occurred for all deposition conditions. The grain size for high temperature and low concentration $Pb(NO_3)_2$ deposition was bigger than from low temperature and high concentration deposition conditions. While cycling converted all grains into loosely adhered flappy deposit with numerous pores. X-ray diffraction measurement indicates that high concentration, high temperature, and high current density favored ${\beta}-PbO_2$ deposition while ${\alpha}-PbO_2$ converted to ${\beta}-PbO_2$ together with some unconverted $PbSO_4$ during cycling in $H_2SO_4$.


Supported by : University of Rajshahi


  1. H. Bode, Lead-Acid Batteries, Wiley and Sons, New York, 1977
  2. B. Culpin, D. Rand, J. Power Sources, 1991, 36(4), 415-438.
  3. A. F. Hollenkamp, J. Power Sources, 1996, 59(1-2), 87-98.
  4. Y-II. Jang, N. J. Dudney, T. N. Tiegs, J. W. Klett, J. Power Sources, 2006, 161(2), 1392-1399.
  5. S. Ai, Q. Wang, H. Li, L. Jin, J. Electroanal. Chem., 2005, 578(2), 223-229.
  6. M. Panizza, G. Cerisola, Electrochim. Acta, 2003, 48, 3491-3497.
  7. A. Eftkhari, Sens. Actuators B, 2003, 88(3), 234-238.
  8. S. Stucki, G. Theis, R. Kötz, H. Devantay, H. J. Christen, J. Electrochem. Soc., 1985, 132(2), 367-371.
  9. R. Amadelli, L. Armelao, A. B. Velichenko, N. V. Nikolenko, D. V. Grienko, S. V. Kovalyov, F. I. Danilov, Electrochim. Acta, 1999, 45(4), 713-720.
  10. K. Kinoshita, Electrochemical oxygen technology, John Wiley & Sons, New York, 1992.
  11. D. Devilliers, M. T. Dinh Thi, E. Mahe, Q. Le Xuan, Electrochim. Acta, 2003, 48(28), 4301-4309.
  12. D. C. Johnson, J. Feng, L. L. Houk, Electrochim. Acta, 2000, 46(2), 323-330.
  13. S. P. Tong, C. A. Ma, H. Feng, Electrochim. Acta, 2008, 53(6), 3002-3006.
  14. J. C. Forti, A. R. De Andrade, J. Electrochem. Soc., 2007, 154(1), E19-E24.
  15. D. Linden, T. B. Reddy, Handbook of Batteries, 3rd edn., McGraw-Hill, New York, 2001.
  16. K. Das, A. Mondal, J. Power Sources, 1995, 55(2), 251-254.
  17. K. Das, A. Mondal, J. Power Sources, 2000, 89(1), 112-116.
  18. T. Mahalingam, S. Velumani, M. Raja, S. Thanikaikarasan, J. P. Chu, S. F. Wang, Y. D. Kim, Mater. Charact., 2007, 58(8), 817-822.
  19. J. P. Carr, N. A. Hampson, Chem. Rev., 1972, 72(6), 679-702.
  20. A. Czerwinski, M. Zelazowska, J. Power sources, 1997, 64(1), 29-34.
  21. D. R. P. Egan, C. T. J. Low, F. C. Walsh, J. Power Sources, 2011, 196(13), 5725-5730.
  22. P. Ruetschi, J. Electrochem. Soc., 1992, 139(5), 1347-1351.
  23. J. Feng, D. C. Johnson, J. Appl. Electrochem., 1990, 20(1), 116-124.
  24. N. A. Hampson, P. C. Jones, R. F. Phillips, Canad. J. Chem., 1969, 47(12), 2171-2179.
  25. J. Lee, H. Varela, S. Uhm, Y. Tak, Electrochem. Commun., 2000, 2(9), 646-652.
  26. P. K. Shen, X. L. Wei, Electrochim. Acta, 2003, 48(12), 1743-1747.
  27. M. Taguchi, H. Sugita, J. Power Sources, 2002, 109(2), 294-300.
  28. M. R. F. Hurtado, P. T. A. Sumodjo, A. V. Benedetti, Electrochim. Acta, 2003, 48(19), 2791-2798.
  29. C. T. J. Low, D. Pletcher, F. C. Walsh, Electrochem. Commun., 2009, 11(6), 1301-1304.
  30. I. Sires, C. T. J. Low, C. Ponce-de-Leon, F. C. Walsh, Electrochim. Acta, 2010, 55(6), 2163-2172.
  31. I. Sires, C. T. J. Low, C. Ponce-de-Leon, F. C. Walsh, Electrochem. Commun., 2010, 12(1), 70-74.
  32. W. Mindt, J. Electrochem. Soc., 1969, 116(8), 1076-1078.
  33. P. Ruetschi, J. Sklarchuk, R. T. Angstadt, Electrochim. Acta, 1963, 8(5), 333-342.
  34. B. Rezaei, M. Taki, J. Solid State Electrochem., 2008, 12(12), 1663-1671.
  35. C. A. Melendres, M. Pankuch, J. Electroanal. Chem., 1992, 333(1), 103-113.
  36. M. Wherens-Dijksma, P. H. L. Notten, Electrochim. Acta, 2006, 51(18) 3609-3621.
  37. C. Daniel, J. O. Besenhard, D. Berndt, Handbook of Battery Materials, 2nd edn., Wiley-VCH Veriag GmbH & Co., VGaA, 2011, 190