DOI QR코드

DOI QR Code

Low-resistance Transparent Plane Heating System using CVD Graphene

CVD 그래핀을 이용한 저저항 투명면상발열 시스템

  • Yoo, Byongwook (Department of Energy IT, Gachon University) ;
  • Han, Sangsoo (Department of Electrical Engineering, Gachon University)
  • Received : 2019.05.10
  • Accepted : 2019.06.23
  • Published : 2019.06.30

Abstract

To prevent the low heating effect of heating system caused by the high sheet resistance of CVD graphene, multi-layered graphene was laminated to implement a Transparent plane heating system with good optical properties of low-resistance. Low-resistance plane heating system implemented by $300{\times}400{\times}5mm$ heating plane laminated multi-layered CVD graphene film and PWM control system to drive efficient power. A plane resistance value of $85.5{\Omega}/sq$ was measured on average for 4-layer CVD graphene film used as a heating plane. Thus, the transfer by thermal film as the method of implementing low-resistance CVD graphene is reasonable. The experimental results of heat test show that an average heat-rise rate in low-resistance, transperent plane heating system using CVD graphene is $10^{\circ}C/min$ and has an optical transmittance rate of 86.44%. Therefore, the proposed heating system is applicable to large window glass and vehicle heating window-shild-glass.

높은 CVD 그래핀저항으로 인한 낮은 발열효과를 해결하기 위해 다층으로 그래핀을 적층하여, 저저항의 광학특성이 우수한 투명 면상 발열시스템을 구현하였다. 제작한 CVD 그래핀의 발열필름으로 $300{\times}400{\times}5mm$ 발열체를 제작하고, 효율적인 전력을 구동하기 위해 PWM 제어를 통한 회로를 구성하여 시스템을 구현하였다. 발열체로 사용한 4층의 CVD 그래핀 필름의 평균 면 저항 측정값은 $85.5{\Omega}/sq$이다. 따라서 저 저항의 CVD 그래핀의 구현 방법으로 열전사의 적층의 방법은 타당하다. 발열시험 결과, CVD 그래핀을 이용한 저저항 투명 면상 발열 시스템의 평균 발열상승은 $10^{\circ}C/min$ 이고, 86.44%의 CVD 그래핀 필름의 광투과율을 갖음을 보여준다. 따라서 제시한 발열 시스템은 대형창 유리 및 자동차 발열유리로서 적용가능하다.

Keywords

JBJTBH_2019_v12n3_218_f0001.png 이미지

그림 1. 저저항면상발열체 시스템 구성도 Fig. 1. Block diagram of Low-resistance plane heating system.

JBJTBH_2019_v12n3_218_f0002.png 이미지

그림 2. 에칭전 그래핀 필름의 구조 Fig. 2. Structure of graphene film before etching process.

JBJTBH_2019_v12n3_218_f0003.png 이미지

그림 3. PI 전사필름위에 구성된 그래핀 Fig. 3. Graphene on PI transfer film.

JBJTBH_2019_v12n3_218_f0004.png 이미지

그림4. 다층구조 그래핀 제작을 위한 공정도 Fig. 4. Process diagram for making graphene of muli-layered structure.

JBJTBH_2019_v12n3_218_f0005.png 이미지

그림 5. 발열용 CVD 그래핀 필름의 구조 Fig. 5. The structure of heating CVD graphene film.

JBJTBH_2019_v12n3_218_f0006.png 이미지

그림 6. 300X400X5 mm 발열유리 Fig. 6. 300x400X5 mm heating glass.

JBJTBH_2019_v12n3_218_f0007.png 이미지

그림 7. 전사필름이 제거된 CVD 그래핀 필름 Fig. 7. CVD graphene film in which transfer film removed.

표 1. 4층 CVD 그래핀 필름의 측정된 면저항 Table 4. Measured sheet resistance of 4 layer CVD graphene film.

JBJTBH_2019_v12n3_218_t0001.png 이미지

표 2, 발열시스템의 전력에 따른 결과 Table2. The result according to the power in the heating system.

JBJTBH_2019_v12n3_218_t0002.png 이미지

References

  1. Seoung-Ki Lee, Jong-Hyun Ahn, "Graphene based Transparent Conductive Film: Status and Perspective,", Journal of the Korean Ceramic Society 50(5), 309- 318, september, 2013. https://doi.org/10.4191/kcers.2013.50.5.309
  2. Hyunsu Cho, Jin-Wook Shin, Nam Sung Cho, Jaehyun Moon, Jun-Han Han, Young-Duck Kwon, Seungmin Cho, Jeong-Ik Lee,"Optical Effects of Graphene Electrodes on Organic Light -Emitting Diodes", IEEE Journal of Selected Topics in Quantum Electronics, Vol. : 22,Issue :1, Jan.-Feb. 2016.
  3. Sora Shin, Hae-Hyun Choi, Yung Bin Kim, Byung-Hee, Ho,Joo-Young Lee, "Evaluation of body heating protocols with graphene heated clothing in a cold environment", International Journal of Clothing Science and Technology, 29, 830-844 ,2017. https://doi.org/10.1108/IJCST-03-2017-0026
  4. Sangmin Kang, Haehyun Choi, Soo Bin Lee, Seong Chae Park, Jong Bo Park, Sangkyu Lee, "Efficient Heat Generation in Large Area Graphene Films by Electrom agnetic Wave Absorption" 2D Mater. 4, 025037 2017. https://doi.org/10.1088/2053-1583/aa5b3f
  5. H. Y. Juen, C. K. Lee, J. Bae, S. J. LEE, "A Study on the Performance Test and Verification of Heat Transfer characteri -stic in Automobile Rear Window Heater", Journal of the Korea society for power system engineering, Vol.9, No2, pp73- 80, 2005.
  6. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, "Superior Thermal Conductivity of Single Layer Graphene," Nano Lett., 8 902-07, 2008. https://doi.org/10.1021/nl0731872
  7. G. Jo, M. Choe, C.-Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T.W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, T. Lee, "Large scale Patterned Multi-layer Graphene Films as Transparent Conduc ting Electrodes for GaN Lightemitting Diodes," Nanotechnol., 21, 2010.
  8. Sukang Bae, Seoung-Ki Lee, Min Park "Large Scale Graphene Production Techniques for Practical Applications", Applied Science and Convergence Technology Vol. 27 No.5, pp79-85, 2018. https://doi.org/10.5757/asct.2018.27.5.79
  9. Sang-Hoon Bae, Roxana Shabani, Jae -Bok Lee, Seung-Jae Baeck, Hyoung Jin Cho, Jong-Hyun Ahn, "Graphene Based Heat Spreader for Flexible Electronic Device", IEEE Trans. on Electron Devices Vol. 61, pp4171-4175, Issue 12, 2014. https://doi.org/10.1109/TED.2014.2364606
  10. Sunghoon Jung, Wonmin Ahn, Do-Geun Kim, "Development of AgNW/Reduced Graphene Oxide Hybrid Transparent Eletrode with Long-Term Stability Using Plasma Reduction", Journal of The Korean Institute of Surface Engineering 49(1), pp 87-91, 2016. https://doi.org/10.5695/JKISE.2016.49.1.87