A new distribution record of *Chrysosplenium grayanum* Maxim. (Saxifragaceae) in Korea: Evidence from morphological and molecular data

Ji-Eun Choi¹, Kyung-Ho In², Bong Seok Kim³, Kyeonghee Kim¹, Jin-Seok Kim¹, Yong-In Kim⁴, Byoung Yoon Lee¹ and Chae Eun Lim¹,*

¹National Institute of Biological Resources, Incheon 22689, Republic of Korea
²Yeonggwang County office, Yeonggwang-gun, Jeollanam-do 57036, Republic of Korea
³The Society for Korean Peninsula Plants, Republic of Korea
⁴Multidisciplinary Genome Institute, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea

*Correspondent: chaelim@korea.kr

Chrysosplenium grayanum Maxim. (Series Nepalensia), which had been known to be restricted to Japan, was newly discovered from Mt. Cheongtae in Yeonggwang-gun, Jeollanam-do, located in the southern part of the Korean Peninsula. Species identification was confirmed using morphological characteristics and DNA sequence data, while comparing with materials obtained from Japan and herbarium specimens. *Chrysosplenium grayanum* is clearly distinguished from the remaining taxa of the genus *Chrysosplenium* by having glabrous plant body, opposite leaves, cylindrical papillae with roundish head at the tip on the smooth seed surface, and four stamens. Molecular sequence data of the nuclear ribosomal ITS regions, chloroplast *rbcL* and *matK* genes strongly supported that this previously unknown *Chrysosplenium* species from Korea is *C. grayanum*. Taking the molecular and the morphological evidence into consideration, it is clear that newly discovered *Chrysosplenium* population in Korea is conspecific with the widely distributed *C. grayanum* in Japan. In this paper, we provide a description, illustration, and photo images of *Chrysosplenium grayanum* from Korea and also a key to the *Chrysosplenium* species in Korea.

Keywords: *Chrysosplenium grayanum*, *Chrysosplenium*, Saxifragaceae, nrITS, cp *rbcL* and *matK* genes

© 2020 National Institute of Biological Resources
DOI:10.12651/JSR.2020.9.1.046

INTRODUCTION

Chrysosplenium L. (Saxifragaceae) is composed of approximately 60 species (Hara, 1957), and usually defined within the Saxifragaceae by having tetramerous flowers without petals (Bensel and Palser, 1975; Kim, 2007; Kim et al., 2018). *Chrysosplenium* species are primarily distributed in temperate regions of the Northern Hemisphere, except for two disjunct species in South America; *C. valdeivicum* Hook. and *C. macranthum* Hook. (Hara, 1957; Spongberg, 1972; Ye and Zhang, 1994; Wakabayashi and Takahashi, 1999; Han et al., 2011). In the Northern Hemisphere, Eastern Asia (including Sino-Himalayan regions, China, Korea and Japan) is well known as the center of diversity for the genus *Chrysosplenium* (Hara, 1957; Spongberg, 1972; Chung and Kim, 1988). Hara (1957), in his synopsis of *Chrysosplenium*, recognized 17 series based on detailed morphological studies, of which nine species representing five series are distributed in Korea (Chung and Kim, 1988; Han et al., 2011; Kim and Kim, 2011; 2015). However, the number of taxa in Korea is still controversial due to extreme morphological variation in their diagnostic characters and seasonal changes in the morphology of vegetative parts (Nakai, 1952; Hara, 1957; Chung, 1965; Park, 1974; Kim, 2007; Lee, 1980).

Chrysosplenium grayanum Maxim. belongs to the series Nepalensia Maxim., and is known as an endemic species of Japan. The species is widely distributed in all Japanese Islands (Wakabayashi, 2001). *Chrysosplenium grayanum* was first described by Maximowicz (1877) from Hokkaido, Japan mainly on the basis of plant habit, the number of stamens, and papillae shapes on the seed surfaces. In the original description, Maximowicz (1877) stated that *C. grayanum* is very distinct from other species in the genus in having four stamens and seed
papillae with a globose, rough head. Meanwhile, Nakai (1914), in his floristic research on Jeju Island, reported that C. grayanum occurred on Mt. Halla in Korea without voucher specimens and morphological descriptions.

Since Nakai (1914) reported C. grayanum in Korea, it has been accepted as a Korean indigenous species by most Korean botanists (Lee and Oh, 1985; Lee, 1996; Kim and Kim, 1997; Lee, 2006). However, Hara (1957) recognized C. grayanum as being endemic to Japan, pointing out the possibility of misidentification between C. grayanum and C. pseudofauriei H. Lév.

However, Chrysosplenium species are quite often misidentified because they are extremely variable in leaf morphology depending on growing period and habitat difference (Hara, 1957; Kim, 2007; Kim and Kim, 2011). In addition, the taxonomic difficulty has been attributed to few diagnostic characters and differences in appearance (e.g., flowers and capsules, color of bracteal leaves, shape of sterile branches after fruiting) between living plants and dried herbarium specimens (Hara, 1957; Kim, 2007). For these reasons, C. grayanum was still considered by some Korean botanists to be distributed throughout the Korean Peninsula, including Hamgyeongbuk-do, Gyeongsangbuk-do, and Jeju-do (Lee and Oh, 1985; Lee, 1996; Kim and Kim, 1997; Lee, 2006). However, other Korean botanists (Park, 1974; Chung and Kim, 1988) disputed the presence of C. grayanum in Korea, supporting Hara’s results.

During recent field works in Mt. Cheongtae, located in Yeonggwang-gun, Jeollanam-do, Korea in March of 2017, the second and third authors recognized a Chrysosplenium species with similar morphological characters with C. grayanum Maxim. in the series Nepalensis. After comprehensive morphological examination of specimens and literature (Maxim, 1877; Chung and Kim, 1988; Wakahayashi, 1999), we concluded that this Chrysosplenium species is C. grayanum Maxim. Sequence data from three molecular markers [ITS regions of nuclear ribosomal DNA (nrITS), chloroplast (cp) rbcL, and matK] of C. grayanum of Japan and Korea were also consistent with the morphology. Therefore, we confirm the distribution of C. grayanum in Korea based on the evidence from morphological and molecular data, and constructed revised key to identify Korean Chrysosplenium species based on specimens collected from the survey.

Materials and Methods

The newly discovered C. grayanum from Mt. Cheong-tae was exhaustively compared against the type specimens [Japan, Hakodate, 1861, Maximowicz s.n. (holotype, P!, MNHN-P-00709321, available at http://science.mnhn.fr/; isotype, K!, K000732800, available at https://apps.kew.org/)], and with the original description of Maximowicz (1877). In addition, the new materials from Korea were compared with C. grayanum collected from Hokkaido and Honshu in Japan (Table 1). Morphological characters were studied using stereo microscope (ZX7, Olympus, Japan) and upright metallurgical microscope (BX51, Olympus, Japan). The seeds were observed with a Scanning Electron Microscope (JSM-6390, JEOL, Japan) after coating the completely dried seed surface with gold (Sputter Coater 108auto, Cressington, UK).

For molecular identification of the new materials, we obtained nrITS, cp rbcL and matK sequence data for total 30 individuals representing 10 species of Chrysosplenium from Korea and Japan (nine in Korea and two in Japan). Among them, two outgroup taxa [C. flagelliferum F. Schmidt and C. japonicum (Maxim.) Makino] were selected based on the results of a previous phylogenetic analysis (Nakazawa et al., 1997). All voucher specimens were deposited at the herbarium of National Institute of Biological Resources (KB). Total genomic DNA was extracted using a DNeasy Plant Mini Kit (Qiagen, Germany). The nrITS region was amplified and sequenced with a modified ITS1 primer by Kim and Kim (2011) and ITS4 (White et al., 1990), rbcL region with 1F and 724R (Fay et al., 1997), and matK region with 3F_Kim_r and 1R_Kim_f (K. J. Kim, per. comm.). Each PCR reaction was carried out according to procedures described in previous studies (Nakazawa et al., 1997; Kim and Kim, 2011). Sequence data were assembled and edited using Sequencher version 5.1 (Gene Codes Co., USA), aligned with ClustalW (Thompson et al., 1994), and proofread by eye in BioEdit version 7.2.5 (http://www.mbio.ncsu.edu/BioEdit/bioedit.html). Phylogenetic analyses were performed using maximum parsimony (MP) and neighbor-joining (NJ) methods. The MP and NJ analysis were implemented in PAUP* 4.0b10 (Swofford, 2002). Heuristic MP analysis was replicated 1,000 times with random stepwise addition, tree bisection-reconnection (TBR) branch swapping, and saving multiple trees. The MP bootstrap analyses (Felsenstein, 1985) were performed using 1,000 replicates with TBR branch swapping and a random addition sequence. The combined dataset of nrITS and two cp DNA regions were evaluated using incongruence length difference (ILD) test in PAUP* 4.0b10 (Swofford, 2002) under the partition homogeneity test. The Kimura’s 2-parameter model (Kimura, 1980) was applied in the NJ analysis. Bootstrap analysis was performed 1,000 times to evaluate reliability for each factor.
Table 1. List of taxa, voucher specimens, GenBank accession numbers and WIGIS numbers of sequences newly generated during this study. WIGIS is Wildlife Integrated Genetic Information System in National Institute of Biological Resources, Korea.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Voucher Specimens</th>
<th>GenBank / WIGIS number (ITS, rbcL, matK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrysosplenium aureobracteatum</td>
<td>Korea, Gangwon-do, Mt. Gwangdeog, Lee JD et al. 17127-1 (NIBRVP0000621581)</td>
<td>MK989508, MK989529, MK989559/</td>
</tr>
<tr>
<td></td>
<td>Korea, Gangwon-do, Mt. Gwangdeog, Lee JD et al. 17127-2 (NIBRVP0000621582)</td>
<td>WBN0339300, WBN0337344, WBN0339146/</td>
</tr>
<tr>
<td>C. barbatum</td>
<td>Korea, Jeollanam-do, Doldeung-myeon, Lee JD et al. 17008-1 (NIBRVP0000611575)</td>
<td>MK989505, MK989530, MK989560/</td>
</tr>
<tr>
<td>C. flaviflorum</td>
<td>Korea, Jeollanam-do, Mt. Gagok-myeon, Lee JD et al. 17066 (NIBRVP0000611778)</td>
<td>MK989507, MK989531, MK989561/</td>
</tr>
<tr>
<td></td>
<td>Korea, Gyeongsangbuk-do, Mt. Cheongtae, Lee JD et al. 17030 (NIBRVP0000611623)</td>
<td>WBN0339247, WBN0337331, WBN0339133/</td>
</tr>
<tr>
<td>C. flagelliferum</td>
<td>Korea, Chungcheongbuk-do, Mt. Cheonggyang, Lee JD et al. 17039 (NIBRVP0000611745)</td>
<td>MK989515, MK989532, MK989569/</td>
</tr>
<tr>
<td></td>
<td>Korea, Gyeongsangbuk-do, Mt. Cheongtae, Lee JD et al. 17048 (NIBRVP0000611758)</td>
<td>WBN0339257, WBN0337301, WBN0339103/</td>
</tr>
<tr>
<td></td>
<td>Japan, Hokkaido, Sapporo, Mt. Maruyama, Nakamura 16401 (NIBRVP0000647409)</td>
<td>MK989514, MK989537, MK989567/</td>
</tr>
<tr>
<td>C. flaviflorum</td>
<td>Japan, Hyogo prefecture, Sasayama, Lee JH & JS Shin s. n. (NIBRVP0000709264)</td>
<td>WBN0339252, WBN0337295, WBN0339099/</td>
</tr>
<tr>
<td></td>
<td>Korea, Jeollanam-do, Mt. Cheongtae, Lee JD et al. 17090-3 (NIBRVP0000611824)</td>
<td>MK989514, MK989537, MK989567/</td>
</tr>
<tr>
<td>C. japonicum</td>
<td>Korea, Jeju-do, Gwetmuloreum, Lee JD et al. 17003-1 (NIBRVP0000611566)</td>
<td>WBN0339252, WBN0337295, WBN0339099/</td>
</tr>
<tr>
<td></td>
<td>Korea, Jeollabuk-do, Mt. Chaegye, Lee JD et al. 17022 (NIBRVP0000611607)</td>
<td>MK989515, MK989538, MK989568/</td>
</tr>
<tr>
<td></td>
<td>Korea, Chungcheongnam-do, Palbong-myeon, Lee JD et al. 17025-1 (NIBRVP0000611612)</td>
<td>WBN0339263, WBN0337307, WBN0339109/</td>
</tr>
<tr>
<td>C. kamtschaticum</td>
<td>Japan, Hokkaido, Sapporo, Mt. Maruyama, Nakamura 16403 (NIBRVP0000647509)</td>
<td>MK989516, MK989536, MK989566/</td>
</tr>
<tr>
<td></td>
<td>Korea, Jeju-do, Haean-dong, Lee JD et al. 17043 (NIBRVP0000611753)</td>
<td>WBN0339252, WBN0337295, WBN0339099/</td>
</tr>
<tr>
<td>C. pseudofauriei</td>
<td>Korea, Gangwon-do, Mt. Cheongtae, Lee JD et al. 17051-1 (NIBRVP0000611764)</td>
<td>MK989526, MK989550, MK989580/</td>
</tr>
<tr>
<td>C. ramosum</td>
<td>Korea, Chungcheongbuk-do, Gagok-myeon, Lee JD et al. 17086 (NIBRVP0000611817)</td>
<td>WBN0339291, WBN0337335, WBN0339137/</td>
</tr>
<tr>
<td></td>
<td>Korea, Chungcheongbuk-do, Daegang-myeon, Lee JD et al. 17097-1 (NIBRVP0000614442)</td>
<td>MK989517, MK989551, MK989581/</td>
</tr>
<tr>
<td></td>
<td>Korea, Gangwon-do, Mt. Taegi, Lee JD et al. 17147 (NIBRVP0000616611)</td>
<td>WBN0339298, WBN0337342, WBN0339144/</td>
</tr>
<tr>
<td></td>
<td>Korea, Gyeongsangbuk-do, Mt. Irwol, Lee JD et al. 17205-1 (NIBRVP0000623390)</td>
<td>MK989518, MK989543, MK989573/</td>
</tr>
<tr>
<td></td>
<td>Korea, Gyeongsangbuk-do, Mt. Jeollabuk, Lee JD et al. 17205-2 (NIBRVP0000623391)</td>
<td>WBN0339303, WBN0337347, WBN0339149/</td>
</tr>
<tr>
<td></td>
<td>Korea, Gyeongsangbuk-do, Mt. Cheonggye, Lee JD et al. 17212 (NIBRVP0000623392)</td>
<td>MK989519, MK989542, MK989572/</td>
</tr>
<tr>
<td></td>
<td>Korea, Gyeongsangbuk-do, Mt. Cheongtae, Lee JD et al. 17212 (NIBRVP0000623393)</td>
<td>WBN0339307, WBN0346806, WBN0339153/</td>
</tr>
</tbody>
</table>
RESULTS AND DISCUSSION

Description

Similar to C. pseudofauriei but differing by usually having four to six stamens opposite the sepals (vs. eight stamens), smaller flowers 1.5–2.5 mm in diameter (vs. 3.0–4.0 mm in diameter), glabrous plant body (vs. glabrous plant body except petiole of rosette leaves), and cylindrical papillae with roundish head at the tip on smooth seed surfaces (vs. cylindrical papillae with truncate tip on scabrous seed surfaces).

Herbs, perennial, hermaphroditic, rhizomatous, glabrous. Rhizomes creeping, elongate. Roots fibrous, white, from lower nodes of branches. Sterile branches well developed, decumbent, simple or branched, 7–8 cm tall, ca. 1 mm in diam., fleshy, glabrous. Leaves on sterile branches not in rosette, simple, opposite, 2 or 3 pairs, estipulate, petiolate; petioles 1–3 mm long; blade oblong-ovate, 4–6 × 5–8 mm, apex obtuse, base cuneate, margins obscurely undulate or crenate, with 3 or 4 teeth on each side. Flowering stems similar to sterile branches, (4–)11–20 cm tall. Leaves on flowering stems basal and cauline. Basal leaves on flowering stems 1 or 2 pairs, withered before flowering; petioles 6–8 mm; blade oblong-ovate, 1.4–1.8 × 1.2–1.5 mm, apex obtuse, base cuneate, margins crenate. Cauline leaves on flowering stems 2–5 (–7) pairs; petioles 3–5 mm; blades ovate-oblanceolate, (0.3–)0.6–1 (–1.7) × (0.3–)0.5–0.8 (–1.7) cm, apex rounded, base rounded to subtruncate, margins obscurely undulate or crenate, with 4–6 teeth on each side, adaxial surface green, abaxial surface light green. Inflorescences terminal, cymes, 9–12-flowered, surrounded by bracteal leaves; bracteal leaves several, compact; petiole of bracteal leaves up to 3 mm long; blade of bracteal leaves broadly ovate, 0.7–1.5 × 0.7–1.2 cm, margins crenate, with 3–6 teeth on each side, both surfaces green to yellowish-green during flowering. Flowers bisexual, 4-merous, campanulate, 1.5–2.5 mm in diam.; sepals free, persistent, 4, erect, imbricate in bud, petaloid, yellowish-green, nearly orbicular, slightly saccate, 0.7–1.5 × ca. 0.5 mm, apex rounded; petals absent; stamens 4 (–6), epipetalous; filaments filiform, ca. 0.8 mm long; anthers yellow, subglobose, 2-lobed, dehiscent longitudinally; ovary subinferior, 1-locular, 2-carpellate; ovules many; styles 2, free, very short; stigmas 2, punctate; placentation parietal. Fruits capsules, 2-lobed, 4–5 × 6–8 mm; lobes ascending, dehiscent along an adaxial suture, horn-shaped, subequal, glabrous. Seeds brown to dark brown, usually 30–36, ovoid-ellipsoid, 0.5–0.7 × 0.4–0.5 mm, moderately papillose on smooth surfaces; papillae cylindrical with roundish head at the tip. Chromosome number 2n = 22 (Wakabayashi, 2001).

Korean name: Gwaeng-i-nun 꼼이논

Phenology: Flowering in April to May, and fruiting from May to June.

Distribution: Japan, Korea (Yeonggwang-gun, Jeollanam-do)

Specimens examined: KOREA. Jeollanam-do: Yeonggwang-gun, Daema-myeon, Songjiuk-ri, Mt. Cheongtage, ca. 278 m, 25 May 2017, LeeJD et al. 17090-1 (KB, NIBRVP000611822), LeeJD et al. 17090-2 (KB, NIBRVP000611823), LeeJD et al. 17090-3 (KB, NIBRVP000611824). JAPAN. Hokkaido, Chuo-ku, Sapporo city, Mt. Maruyama, 15 October 2017, 16401 (KB, NIBRVP0006647409), 16402 (KB, NIBRVP0006647418); Honshu, Hyogo Pref., Saseyama city, elev. ca. 376 m, 29 April 2018, Lee JH & JS Shin s. n. (KB, NIBRVP000709264).

Surveys of habitat status and distribution

During field research in 2017, conducted in the southeasten part of the Korean Peninsula, a new C. grayanum site was found in Korea. Chrysosplenium grayanum is very rare in distribution, and only a few isolated populations are found from Mt. Cheongtage, Yeonggwang-gun, Jeollanam-do. Each subpopulation of this species, which contains 50–300 individuals, is usually found in moist habitats with rich soils on forest floors and along streams at an elevation of ca. 278 m. The forest is commonly dominated by Styrax japonicus Siebold & Zucc., Paulownia coreana Uyeki, Weigela subsessilis (Nakai) L. H. Bailey, Prunus sargentii Rehder, Aralia elata (Miq.) Seem.,...
Table 2. Statistics of nrITS, cp rbcL, matK regions, and cpDNA combined data set used in our phylogenetic analyses of Chrysosplenium.

<table>
<thead>
<tr>
<th></th>
<th>Nuclear ribosomal DNA</th>
<th>Chloroplast DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ITS</td>
<td>rbcL</td>
</tr>
<tr>
<td>No. of accessions</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Sequence length (bp)</td>
<td>650–656</td>
<td>656</td>
</tr>
<tr>
<td>Aligned length (bp)</td>
<td>682</td>
<td>656</td>
</tr>
<tr>
<td>G+C ratio (%)</td>
<td>44.4–50.4</td>
<td>43.0–43.9</td>
</tr>
<tr>
<td>No. of variable sites (%)</td>
<td>194 (28.4)</td>
<td>27 (4.1)</td>
</tr>
<tr>
<td>No. of parsimony-informative sites (%)</td>
<td>187 (27.4)</td>
<td>21 (3.2)</td>
</tr>
<tr>
<td>Intraspecific K2P distance (mean)*</td>
<td>0–0.0061 (0.0023)</td>
<td>0–0.0046 (0.0015)</td>
</tr>
<tr>
<td>Interspecific K2P distance (mean)*</td>
<td>0.0108–0.1377 (0.1584)</td>
<td>0–0.0248 (0.0138)</td>
</tr>
<tr>
<td>No. of MP trees</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Tree length</td>
<td>285</td>
<td>37</td>
</tr>
<tr>
<td>Consistency index</td>
<td>0.853</td>
<td>0.757</td>
</tr>
<tr>
<td>Retention index</td>
<td>0.959</td>
<td>0.931</td>
</tr>
</tbody>
</table>

*Outgroup taxa excluded.

Akebia quinata (Houtt.) Decne., Codonopsis lanceolata (Siebold & Zucc.) Trautv. and is mixed with herbal species such as Polygonum thunbergii Siebold & Zucc. and Carex forficula Franch. & Sav. var. forficula.

Molecular data analysis

We obtained nrITS, cp rbcL and matK sequences from 29 accessions of 10 Chrysosplenium taxa (Table 1). The length of the nrITS region in Chrysosplenium was 650–656 bp. The final alignment of the nrITS region included 682 sites, of which 187 (27.4%) were parsimony informative. The length of cpDNA rbcL and matK regions were 656 and 776–782 bp, respectively. The combined rbcL and matK sequences were aligned with a consensus length of 1450 bp, of which 98 (6.8%) were parsimony informative. The incongruence length difference (ILD) test showed that the incongruence between nrITS region and two cpDNA regions (rbcL and matK) was just not significant at the 1% level (p = 0.01). Thus, to avoid combining different phylogenetic information, nrITS, rbcL, matK, and a combined cpDNA dataset were analyzed, respectively. The statistics of data and phylogenetic analyses for the MP tree and NJ tree are provided in Table 2.

The phylogenetic tree from MP and NJ methods produced similar topologies based on the combined cpDNA and nrITS data, respectively (tree not shown). Therefore the better resolved MP tree of the nrITS data is presented with bootstrap support values (Fig. 4). The MP analysis of the nrITS sequence data produced only one optimal tree (CI = 0.853, RI = 0.959), in which 10 Chrysosplenium species in Korea and Japan were divided into seven series (BS = 58–100%, Fig. 4); Nepalensis, Sinica Maxim., Flagellifera Maxim., Alternifolia Maxim., Pilosa Maxim., Kamtschatica H. Hara, and Oppositifolia H. Hara that correspond well with Hara’s (1957) species groups. Phylogenetic analysis showed that the six accessions of C. grayanum (three from Korea and three from Japan) nested together and formed a well-supported monophyletic group (BS = 100%) (Fig. 4); Compared to the sequences of Japanese individuals, the newly discovered Korean individuals differ by 2–5 bp in nrITS, 2 bp in matK, 1 bp in rbcL. However, these differences may be an indication of local differentiation between Korea and Japan. All accessions of C. grayanum consistently formed a monophyletic group in MP and NJ analyses of both nrITS and combined cp DNA sequences. In addition, the Korean individuals are indistinguishable from Japanese individuals of C. grayanum based on their diagnostic morphological characters.

Taking the molecular evidence and the morphology into consideration (Figs. 1–4), it is clear that newly discovered Chrysosplenium population in Korea is conspecific with the widely distributed C. grayanum in Japan. Our study presents morphological and molecular evidence that C. grayanum is distributed in Korea, which until recently was uncertain. On the other hand, The newly discovered C. grayanum population was found to be distributed only in a very limited site of Jeollanam-do, ca. 200 km from Jeju Island, the location of the first report by Nakai (1914). However, Chung and Kim (1988), failed to find C. grayanum populations in Mt. Halla and Mt. Juwang, where this
species was previously reported. If we take this into account, it can be considered that this is the first statement after 106 years since Nakai’s statement.

To date, there are only three subpopulations record from Mt. Cheongtae, all of which are in non-protected areas in forests fragments and disturbed transitions zones.

Fig. 1. Illustrations of *Chrysosplenium grayanum* Maxim. A. Flowering plant; B. Inflorescence; C. Sepals and stamens; D. Capsule with persistent sepals; E. Leaf arrangement. Illustrations of *Chrysosplenium grayanum* were drawn by Park Chan-Ae.
Therefore, this species is listed as endangered (EN) in Korea (IUCN, 2019) due to its rarity and fragmentation of subpopulations. More field work is needed to check for undetected populations in similar conditions, like in southern part of Korean Peninsula including islands along the southern coast.

Fig. 2. Photos of *Chrysogonum grayanum* Maxim. A. Plant habit during flowering; B. Leaves; C. Inflorescence with bracteal leaves; D. Close-up of sepals and stamens.

Fig. 3. Scanning electron micrograph of seed of *Chrysogonum grayanum* Maxim. A. Seed; B. Close-up of seed surface, showing smooth surface with cylindrical papillose with roundish head at the tip.
Key to taxa of *Chrysosplenium* modified from Kim (2007)

1. Leaves opposite.
2. Sepals yellow, erect; capsules horn-shaped.
3. Plants pubescent at all parts.
4. Leaves of sterile branches congested at distal end, with white variegated veins on upper surface …………………… *C. flaviflorum* (누른괭이눈)
5. Plants pubescent at all parts.
6. Plants glabrous except petiole of rosette leaves; stamens 8; cylindrical papillae with truncate tip on scabrous seed surfaces …………………… *C. pseudofauriei* (선괭이눈)
7. Seeds without tubercules.
8. Leaves of sterile branches distantly arranged, with silvery dotted upper surface ……………………

Fig. 4. Phylogenetic relationships resulting from the maximum parsimony analysis of nrITS sequences from eight *Chrysosplenium* taxa and two outgroup taxa (*C. flagelliferaum* in ser. *Flagellifera* and *C. japonicum* in ser. *Alternifolia*). Numbers above the branches indicate bootstrap values (≧80) for maximum parsimony (left) and neighbor-joining (right) analysis.
..............C. epigealum (atinum)
7. Seeds with tubercules.
9. Seed tubercles arranged on inconspicuous longitudinal ridges.
10. Sterile branches highly branched, ca. 30 cm long after fruiting; leaves of sterile branches with silvery dots, upper surface glabrous; bracteal leaves yellowish-green
..............C. ramosissimum (atetime)
10. Sterile branches unbranched, less than 15 cm long after fruiting; leaves of sterile branches without silvery dots, upper surface pilose; bracteal leaves bright yellow
..............C. valdepliosum (ентатим)
9. Seed tubercles arranged on prominent longitudinal ridges.
11. Leaves of sterile branches distantly arranged after fruiting; bracteal leaves golden yellow, greenish yellow at flowering
....... C. aureobracteatum (ентатим)
11. Leaves of sterile branches congested at distal end after fruiting; bracteal leaves green at flowering..............C. barbatum (вататим)

ACKNOWLEDGEMENTS

This paper was carried out with the support of the National Institute of Biological Resources (NIBR201729101, NIBA201910101), and authors thank to Dr. Koh Nakamura, Hokkaido University and parataxonomists of The Society for Korean Peninsula Plants (SKPP) who helped collecting samples from Japan and Korea, respectively. We also thank to a NIBR researcher Kim Jung-Hyun, Ryu Se-A, and Lee Wunggi for supporting studies on Chrysosplenium, and Kim Yu-ri, who took photographs of SEM.

REFERENCES