Half-metallic Ferromagnetism for Mn-doped Chalcopyrite (Al,Ga)As Semiconductor

Chalcopyrite (Al,Ga)As 반도체와 Mn의 반금속 강자성

  • Kang, B.S. (Nanotechnology Research Center, Nano-science & Mechanical Engineering, Konkuk University) ;
  • Song, K.M. (Nanotechnology Research Center, Nano-science & Mechanical Engineering, Konkuk University)
  • 강병섭 (건국대학교 글로컬 캠퍼스 과학기술대학 나노전자기계공학) ;
  • 송기문 (건국대학교 글로컬 캠퍼스 과학기술대학 나노전자기계공학)
  • Received : 2020.08.26
  • Accepted : 2020.09.11
  • Published : 2020.09.30

Abstract

We studied the electronic and magnetic properties for the Mn-doped chalcopyrite (CH) AlAs, GaAs, and AlGaAs2 semiconductor by using the first-principles calculations. The chalcopyrite AlGaP2, AlGaAsP, and AlGaAs2 compounds have a semiconductor characters with a small band-gap. The interaction between Mn-3d and As-4p states at the Fermi level dominate rather than the other states. The ferromagnetic ordering of dopant Mn with high magnetic moment is induced due to the Mn(3d)-As(4p) strong coupling, which is attributed by the partially filled As-4p bands. The holes are mediated with keeping their 3d-electrons, therefore the ferromagnetic state is stabilized by this double-exchange mechanism. We noted that the ferromagnetic state with high magnetic moment is originated from the hybridized As(4p)-Mn(3d)-As(4p) interaction mediated by the holes-carrier.

References

  1. D. N. Talwar, "Assessment of microscopic lattice structures in dilute (AlGaIn)NAs laser materials by local mode spectroscopy and numerical simulations", Journal of Applied Physics 99, pp.123505-1, 2006. https://doi.org/10.1063/1.2205353
  2. R. Y. Umetsu, H. Ishikawa, K. Kobayashi, A. Fujita, K. Ishida, and R. Kainuma, "Effects of the antiferromagnetic anti-phase domain boundary on the magnetization processes in Ni2Mn(Ga0.5Al0.5) Heusler alloy", Scripta Materials 65, pp.41-44, 2011. https://doi.org/10.1016/j.scriptamat.2011.03.014
  3. Ohno, H., A. Shen, F. Matsukura. A. Oiwa, A. End, S. Katsumoto, and Y. Iye, "(Ga,Mn)As: a new diluted magnetic semiconductor based on GaAs", Appl. Phys. Lett. 69, pp.363, 1996. https://doi.org/10.1063/1.118061
  4. Jungwirth, T., J. Simova, J. Masek, J. Kucera, and a. H. MacDonald, "Theory of ferromagnetic (III,Mn)V semiconductors", Rev. Mod. Phys. 78, pp.809-864, 2006. https://doi.org/10.1103/RevModPhys.78.809
  5. W. Lu, R. P. Campion, C. T. Foxon, E.C. Larkins, "A theoretical model for the MBE growth of AlGaAsN using ammonia as the N source", Journal of Crystal Growth 312, pp.1029-1035, 2010. https://doi.org/10.1016/j.jcrysgro.2010.01.004
  6. Konig, I., J. Schliemann, T. Jungwirth, and A. H. Macdonald, "Electronic Structure and Magnetism of Complex Materials", edited by D. J. Singh and D. A. Papaconstantopoulos (Springer Verlag, Berlin), pp.163, 2003.
  7. S Dietl, T., "Modern Aspects of Spin Physics", edited by W. Potz, J. Fabian, and U. Hohenester (Springer, Berlin), pp.1-46, 2007.
  8. Weng W. Chow, Kent D. Choquette, Mary H. Crawford, Kevin L. Lear, G. Ronald Hadley, "Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers", IEEE Journal of Quantum Electronics 33, pp.1810-1824, 1997. https://doi.org/10.1109/3.631287
  9. Thodoropoulou, N., A. F. Hebard, M. E. Overberg, C. R. Abernathy, S. J. Pearton, S. N. G. Chu, and R. G. Wilson, "Unconventional Carrier-Mediated Ferromagnetism above Room Temperature in Ion-Implanted (Ga, Mn)P:C", Phys. Rev. Lett. 89, pp.107203, 2002. https://doi.org/10.1103/PhysRevLett.89.107203
  10. S. Adachi, "Physical Properties of III-V Semiconductor Compound: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP", Wiley, New York, 1992.
  11. M. E. Overberg, G. T. Thaler, R. M. Frazier, C. R. Abernathy, S. J. Pearton, R. Rairigh, J. Kelly, N. A. Theodoropoulou, A. F. Hebard, R. G. Wilson, and J. M. Zavada, "Magnetic properties of Mn-implanted AlGaP alloys", J. Vac. Sc. Technol. B 21, pp.2093, 2003. https://doi.org/10.1116/1.1609473
  12. F. Shi, J. Zhan, H.C. Cheng, "Photoemission Characteristic of Transmission-Mode Extended Blue GaAs Photocathodes", Spectrosc. and Spectral. Anal. 32, pp.297-301, 2012.
  13. Byung-Sub Kang, Kie-Moon Song, and Haeng-Ki Lee, "Ab Initio Study of Ferromagnetism in Mn-doped $AlGaP_2$", Phys. Status Solidi C 14, pp.1700219-1700224, 2017.
  14. F. El Haj Hassan, A. Breidi, S. Ghemid, B. Amrani, H. Meradji, and O. Pages, "First-principles study of the ternary semiconductor alloy (Ga,Al)(As,Sb)", J. of Alloys and Comp. 499, pp.80-89, 2010. https://doi.org/10.1016/j.jallcom.2010.02.121
  15. Byung-Sub Kang, Kwang-Pyo Chae, and Haeng-Ki Lee, "Half-Metallic Ferromagnetism in Chalcopyrite $(AlGaMn)P_2$", Advanced in Condensed Matter Phys., 706957(Article ID), pp.1-7, 2015.
  16. O. K. Andersen, "Linear methods in band theory", Phys. Rev. B 12, pp.3060, 1975. https://doi.org/10.1103/PhysRevB.12.3060
  17. S. Y. Savrasov, "Linear-response theory and lattice dynamics: A muffin-tin-orbital approach", Phys. Rev. B54, pp.16470, 1996 https://doi.org/10.1103/PhysRevB.54.16470
  18. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple", Phys. Rev. Lett. 77, pp.3865-3868, 1996. https://doi.org/10.1103/PhysRevLett.77.3865
  19. C. Kittel, "Introduction to Solid State Physics", Seventh ed. (John Wiley & Sons, 1996).
  20. J. Okabayashi, A. Kimura, O. Rader, T. Mizokawa, A. Fujimori, T. Hayashi, and M. Tanaka, "Core-level photoemission study of $Ga_{1-x}Mn_xAs$", Phys. Rev. B 58, pp.R4211, 1998. https://doi.org/10.1103/PhysRevB.58.R4211
  21. Bouzerar, G. T. Ziman, and J. Kudrnovoky, "Compensation, interstitial defects, and ferromagnetism in diluted ferromagnetic semiconductors", Phys. Rev. B. 72, pp.125207, 2005. https://doi.org/10.1103/PhysRevB.72.125207
  22. Burch, K. S., D. B. Shrekenhamer, E. J. Sinley, J. Stephens, B. L. Sheu, R. K. Kawakami, P. Schiffer, N. Samarth, D. D. Awschalom, and D. N. Basov, "Impurity Band Conduction in a High Temperature Ferromagnetic Semiconductor", Phys. Rev. Lett. 97, pp.87208, 2006. https://doi.org/10.1103/PhysRevLett.97.087208