INTRODUCTION

As shown in the taxon name of “Halacarida” (meaning ‘acarids from salt waters’), halacarids are basically marine. Only 67 species or subspecies of 17 genera (about 6% of the total number of species currently recorded in the family Halacaridae Murray, 1877) are freshwater or brackish-water (Bartsch, 2018; FADA, 2021). Recently, we have collected four halacarid mites at two hillside wells and a streamside hyporheic zone in the southeastern region of South Korea (Fig. 1). They are identified as the *Lobohalacarus weberi* (Romijn and Viets, 1924), notwithstanding a few minor morphological variations were observed among the specimens examined. Herein we redescribe it as a new record from South Korea.

Methods for field and laboratory works, such as collection, preparation for microscope examination, drawings and measurements, are the same as in our previous studies (Lee and Chang, 2017; Shin and Chang, 2019, 2021).

Voucher specimens are kept in the specimen room of the Department of Biological Science, Daegu University (DB), Gyeongsan, Korea.

Terminology and abbreviations in the text and figure captions follow Bartsch (2006): AD, anterior dorsal plate; AE, anterior epimeral plate; ds, dorsal setae on idiosoma (ds-2, second dorsal setae on idiosoma); GA, genitoanal plate; gac, genital acetabula; glp, gland pore(s), numbered glp-1 to glp-5 from anterior to posterior; GO, genital opening; OC, ocular plate(s); P, palp (P-2, second palpal segment); pas, parambulacral setae; PD, posterior dorsal plate; PE, posterior epimeral plate; pgs, perigenital setae; sgs, subgenital setae.

SYSTEMATIC ACCOUNTS

Subclass Acari Leach, 1817
Order Trombidiformes Reuter, 1909
Suborder Prostigmata Kramer, 1877
Superfamily Halacaroidea Murray, 1877
Family Halacaridae Murray, 1877

Genus Lobohalacarus Viets, 1939
Lobohalacarus weberi (Romijn and Viets, 1924)
(FIGS. 2, 3)

Walterella weberi Romijn and Viets, 1924: 217, figs. 3–6;
Walter and Bader, 1952: 224, fig. 58.

Lobohalacarus weberi: Viets, 1939: 506; Green and MacQuitty, 2006: 68A–D; Bartsch, 2011: 128, fig. 5-8a–f; 2018: 493, fig. 3A–C; 2018: 85, fig. 4A–E.

Walterella weberi quadripora Walter, 1947: 236, fig. 35 (cited from Bartsch, 2018).

Lobohalacarus weberi quadriporus: Bartsch, 1975: 35, figs. 38–53.

Material examined. Korea: 1♀ (DB50040), Gyeongsangbuk-do: Gyeongsan-si, Sajeong-dong, a well (near Gyeongsan railway station), 33°43′16″N, 128°43′39″E, 31 Mar 2020, Chang CY; 1♀ (DB50041), Pohang-si, Donghae-myeon, Heungwhan-ri, a well (in a seaside village), 36°01′43″N, 129°30′14″E, 23 Jul 2020, Chang CY and Shin JH; 1♀ (DB50042), same locality as previous, 9 Oct 2020, Shin JH; 1♀ (DB50043), Ulsan-si, Jujeon-dong, Jujeon stream (near Jujeon-campsite), 35°33′08″N, 129°27′06″E, 18 Apr 2021, Shin JH. All the specimens mounted on H-S slides.

Description. Female (DB50043): Idiosoma (FIG. 2A) 271 μm long, 151 μm wide, with single sharp frontal process, 22 μm long, protruding forward on anterior edge of body. AD, PD and OC separated and ornamented with numerous foveae irregularly. AD 94 μm long, 68 μm wide (length to width ratio about 1.38); anterior part blunt triangular-shaped, posterior margin nearly straight or slightly concave, and the widest at level of 3/4 of AD. OC elongated and narrowing posteriorly, 62 μm long, 23 μm wide (length to width ratio about 2.70); cornea and glp absent. PD large, 1.91 times longer than wide, 157 μm long, 82 μm wide; anterior margin wider than posterior one and both margin nearly straight or slightly arched. Seven pairs of dorsal setae (ds) short: ds-1 located between frontal process and anterior AD; ds-2 situated near anterior margin of 1/3 AD; ds-3 and ds-4 located on OC, ds-3 located anterior margin of 1/3 AD; ds-3 and ds-4 located at anterolateral corner of OC and ds-4 at half of OC; remaining 3 dorsal setae (ds-5–7) evenly spaced 1/3 of PD, from anterior third PD to posterior margin of PD.

All ventral plates (AE, PE, and GA) fused (FIG. 2B) and ornamented with numerous foveae. The region corresponding AE with 3 pairs of ventral setae, and pair of epimeral pores present near trochanter of leg II. PE region with 1 short dorsal, 1 long lateral and 1 ventral seta. GO (FIG. 2B, E) 52 μm long, 31 μm wide (length to width ratio about 1.68); posterior portion protrudes slightly backward, with 3 gac on each outside of genital sclerites, lacking sgs. Four pairs of pgs (FIG. 2B) present around GO; foremost pgs located far from ahead of GO; succeeding 3 pgs situated at near anterolateral margin, middle, and posterolateral margin of GO, respectively.

Korean name: 거북등 сраз물응애 (신칭)
Gnathosoma (Fig. 2C) 84 μm long, 49 μm wide (length to width ratio about 1.71). Rostrum 42 μm long, similar length to gnathosomal base; tip of rostrum extending to anterior edge of P-2, in ventral view. Gnathosoma with 4 pairs of rostral setae: proto- and deutorostral setae situated along distal and sub-distal edge, respectively; tritorostral setae long, naked and located at level of posterior 70% rostrum ventrally; basirostral setae the longest, 1.45 times longer than tritorostrals one, naked, and situated at base of rostrum. Palp consisting of 4 segments; lengths of P-1 to P-4 10, 33, 11, 30 μm long, respectively; P-1 the shortest, without setae; P-2 the longest, about 3 times longer than P-1 or P-3, with 1 long dorsal seta anteriorly; P-3 subequal to length of P-1, armed with 1 short spiniform seta on its inner-distal corner, 5 μm long; P-4 with 3 long setae subproximally, 1 short seta inner-distally, and bifurcated distal end. Chelicera (Fig. 2D) 83 μm long: movable digit formed a spine 14 μm long, with several minute denticles on inner surface.

Chaetotaxy of legs (tarsi excluded) (Fig. 3A–D): trochanters 1-1-1-0; basifemora 3-3-2-2; telofemora 5-4-3-2; genua 6-6-3-3; tibiae 8-7-5-6. Genu I with 4 filiform setae dorsally, 1 stout fang-like and 1 sharp spiniform setae ventrally. Tibia I with 4 filiform setae dorsally, 2 sharp spiniform and 2 stout fang-like setae ventrally. Tibiae II–IV with 2, 1, 2 pectinate setae (Fig. 3B–D) on ventral surface, respectively. Tarsus I (Fig. 3A, E) with 3 filiform setae dorsally, 1 solenidion, 2 filiform setae ventrally, 2 doublets ps on both laterally, and 1 stout fang-like seta ventrolaterally; lateral membrane of claw fossa swollen. Tarsus II (Fig. 3B, F) with 3 filiform setae dorsally, 1 solenidion, 1 filiform seta ventrally, a pair of pas. Tarsus III (Fig. 3C) with 4 dorsal and 1 ventral filiform setae, and a pair of pointed pas. Tarsus IV (Fig. 3D) with 3 dorsal and 1 ventral filiform setae, and a pair of pointed pas. Solenidion on tarsi I and II approximately 2/3 and 1/2 as long as adjacent dorsal seta, respectively (Fig. 3E, F). Lateral claws on tarsi I slightly smaller than those on succeeding tarsi, smooth ventrally, with 2–3 tiny accessory processes dorsally. Lateral claws on tarsi II–IV with 2–3 accessory processes dorsally and a row of about 4–7 spines along ventral edges. Median claws on tarsi I–IV present and armed with 1 tooth dorsally.

Male: Not collected.

Measurements and variability. Four adult female specimens were examined and measured: idiosomal lengths ranged from 261 to 328 μm (mean 291 μm, standard deviation 30.76), idiosomal widths ranged from 166 to 203 μm (mean 178 μm, standard deviation 23.57), and mean ratio of length to width 1.64. The number of pgs around GO was slightly variable: four pairs of pgs in two specimens, five pairs in one specimen, while three and four pgs in each side in the specimen from Gyeongsan (DB50040). The number of pgs of male genital setae was also variable: two pairs of pgs in two specimens, three pairs in one specimen, while two and three pgs in each side in a specimen from Pohang (DB50042). Genu I showed armature of a stout fang-like and a sharp spiniform setae ventrally in three females, while two stout fang-like setae ventrally in the female from Pohang (DB50041) (Fig. 3H). The female from Gyeongsan (DB50040) has a comb row of 10–15 teeth along the inner surface of lateral claws, while the three specimens from the other two localities showed a row of 4–7 setules near the middle of ventral edges of lateral claws. One female specimen from Pohang (DB50041) showed only three pectinate setae without a ventral spiniform seta on the tibia of the left leg II (Fig. 3I).

Remarks. In the genus Lobohalacarus Viets, 1939, eight species or subspecies are currently recorded (FADA, 2021). Among them, L. processifer (Walter, 1919) from Peru and L. bucharensis Jankovskaja, 1967 from Kyzylkum Desert, Uzbekistan should be regarded as species inquirenda, because they were obviously based on protonymphs and/or deutonymphs (Bartsch, 2008).

Lobohalacarus hummelincki Viets, 1940 from Venezuela and L. bunurong Harvey, 1988 from Australia are similar to L. weberi (Bartsch, 2008, 2018) in sharing 2, 1, 2 pectinate setae on the ventral surface of tibiae II to IV, respectively. However, L. hummelincki differs from L. weberi by two pairs of pgs, one to two gac each side of GO, and tarsus IV without ventral seta (Viets, 1940), and L. bunurong is discriminated from L. weberi by a pair of pgs and P-4 with two basal setae (Harvey, 1988). Lobohalacarus subterraneus Bartsch, 1995 from New Zealand is clearly distinguished from L. weberi by three pairs of sgs, two ventral spiniform setae (lacking a stout fang-like seta ventrally) in genu I, only a pectinate seta on tibia III throughout all legs, and no ventral setae in tarsi III and IV (Bartsch, 1995b).

Two subspecies of L. weberi are recognized as valid: L. weberi gotoensis Imamura, 1970 and L. weberi tristanensis Bartsch, 1995. Lobohalacarus weberi gotoensis Imamura, 1970 from Japan differs from L. weberi weberi by five pairs of ds, including single pair of ds each on AD and OC (while seven pairs containing two on AD and OC, respectively, in L. weberi weberi) and by a single plumose seta on tibia III only (while 2, 1, 2 pectinate setae on tibiae II–IV in L. weberi weberi) (Imamura, 1970). The other subspecies, L. weberi tristanensis Bartsch, 1995 from Tristan da Cunha Islands in

Fig. 2. *Lobohalacarus weberi*, female (DB50043). A, Idiosoma, dorsal; B, Idiosoma, ventral; C, Gnathosoma, ventral; D, Chelicera, dorsal; E, Genital opening, ventral. Scale bars: A, B = 100 μm, C-E = 50 μm.
the South Atlantic is distinguished from *L. weberi weberi* by the anterior idiosoma forming arch-like with a small round edge or with a spine-like process (while always with a frontal spine-like process in *L. weberi weberi*) and no ventral setae on the telofemur III and tarsus IV (while one ventral seta each on those regions in *L. weberi weberi*) (Bartsch, 1995a).

Korean specimens are well accorded with the typical armature of *L. weberi*, that is, a frontal spine-like process, the arrangement of both dorsal and ventral plates and dorsal setae, ornamentation of pgs in GA area and gac in genital sclerites, and the chaetotaxy of legs, including tibiae II to IV with 2, 1, 2 pectinate setae, respectively. However, the Korean specimens show some minor individual variabilities in the number of pgs and gac, the setal armature on genua of legs, and the shape of spinule row on lateral claws, as mentioned above in the “Measurements and variability”.

The male of *L. weberi* is extremely rare or could be completely absent (Bartsch, 1981). In Korea, only females were found. Another semi-subterranean halacarid species, *Soldanellonyx monardi* Walter, 1919 co-occurred with this species in a hillside well at Gyeongsan.

ORCID

Jong Hak Shin: https://orcid.org/0000-0002-1889-4212
Jimin Lee: https://orcid.org/0000-0001-9004-8275
Cheon Young Chang: http://orcid.org/0000-0001-5557-7120

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

ACKNOWLEDGMENTS

We are grateful to two anonymous reviewers for their critical comments that greatly improved the manuscript. This work was supported in part by the research grant of Daegu University, Korea in 2020 to Cheon Young Chang.

REFERENCES

Received June 17, 2021
Revised July 9, 2021
Accepted July 9, 2021