• Title/Summary/Keyword: CVD

Search Result 1,815, Processing Time 0.217 seconds

Oleanolic Acid Protects the Skin from Particulate Matter-Induced Aging

  • Kim, Youn Jin;Lee, Ji Eun;Jang, Hye Sung;Hong, Sung Yun;Lee, Jun Bae;Park, Seo Yeon;Hwang, Jae Sung
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.220-226
    • /
    • 2021
  • The role of particulate matter (PM) in health problems including cardiovascular diseases (CVD) and pneumonia is becoming increasingly clear. Polycyclic aromatic hydrocarbons, major components of PM, bind to aryl hydrocarbon receptor (AhRs) and promote the expression of CYP1A1 through the AhR pathway in keratinocytes. Activation of AhRs in skin cells is associated with cell differentiation in keratinocytes and inflammation, resulting in dermatological lesions. Oleanolic acid, a natural component of L. lucidum, also has anti-inflammation, anticancer, and antioxidant characteristics. Previously, we found that PM10 induced the AhR signaling pathway and autophagy process in keratinocytes. Here, we investigated the effects of oleanolic acid on PM10-induced skin aging. We observed that oleanolic acid inhibits PM10-induced CYP1A1 and decreases the increase of tumor necrosis factor-alpha and interleukin 6 induced by PM10. A supernatant derived from keratinocytes cotreated with oleanolic acid and PM10 inhibited the release of matrix metalloproteinase 1 in dermal fibroblasts. Also, the AhR-mediated autophagy disruption was recovered by oleanolic acid. Thus, oleanolic acid may be a potential treatment for addressing PM10-induced skin aging.

Organic-inorganic Hybrid Materials for Spin Coating Hardmask (스핀코팅 하드마스크용 유-무기 하이브리드 소재에 관한 연구)

  • Yu, Je Jeong;Hwang, Seok-Ho;Kim, Sang Bum
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.230-234
    • /
    • 2011
  • In this work, the primary material for a single layered hardmask which can afford a spin-on process was prepared by the minture of organic and inorganic sources. The preparation of hybrid polymer was attempted by esterification from silanol terminated siloxane compounds and acetonide-2,2-bis(methoxy)propionic acid. The optical, thermal and morphological properties of the test hardmask film was examined in terms of cross-linking agent and additives. In addition, the etch rate of hardmask film and photo resist layer were compared. The hybrid polymer prepared from organic and inorganic materials was found to be useful for hardmask film to form the nano-patterns.

Effect of Composition on Electrical Properties of Multifunctional Silicon Nitride Films Deposited at Temperatures below 200℃ (200℃ 이하 저온 공정으로 제조된 다기능 실리콘 질화물 박막의 조성이 전기적 특성에 미치는 영향)

  • Keum, Ki-Su;Hwang, Jae Dam;Kim, Joo Youn;Hong, Wan-Shick
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.331-337
    • /
    • 2012
  • Electrical properties as a function of composition in silicon nitride ($SiN_x$) films grown at low temperatures ($<200^{\circ}C$) were studied for applications to photonic devices and thin film transistors. Both silicon-rich and nitrogen-rich compositions were successfully produced in final films by controlling the source gas mixing ratio, $R=[(N_2\;or\;NH_3)/SiH_4]$, and the RF plasma power. Depending on the film composition, the dielectric and optical properties of $SiN_x$ films varied substantially. Both the resistivity and breakdown field strength showed the maximum value at the stoichiometric composition (N/Si = 1.33), and degraded as the composition deviated to either side. The electrical properties degraded more rapidly when the composition shifted toward the silicon-rich side than toward the nitrogen-rich side. The composition shift from the silicon-rich side to the nitrogen-rich side accompanied the shift in the photoluminescence characteristic peak to a shorter wavelength, indicating an increase in the band gap. As long as the film composition is close to the stoichiometry, the breakdown field strength and the bulk resistivity showed adequate values for use as a gate dielectric layer down to $150^{\circ}C$ of the process temperature.

N2 plasma treatment of pigments with minute particle sizes to improve their dispersion properties in deionized water

  • Zhang, Jingjing;Park, Yeong Min;Tan, Xing Yan;Bae, Mun Ki;Kim, Dong Jun;Jang, Tae Hwan;Kim, Min Su;Lee, Seung Whan;Kim, Tae Gyu
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.589-596
    • /
    • 2019
  • Pigments with minute particle sizes, such as carbon black (CB) and pigment red 48:2 (P.R.48:2), are the most important types of pigment and have been widely used in many industrial applications. However, minute particles have large surface areas, high oil absorption and low surface energy. They therefore tend to be repellent to the vehicle and lose stability, resulting in significant increases in viscosity or reaggregation in the vehicle. Therefore, finding the best way to improve the dispersion properties of minute particle size pigments presents a major technical challenge. In this study, minute particle types of CB and P.R.48:2 were treated with nitrogen gas plasma generated via radio frequency-plasma enhanced chemical vapor deposition (RF-PECVD) to increase the dispersion properties of minute particles in deionized (DI) water. The morphologies and particle sizes of untreated and plasma treated particles were evaluated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The average distributions of particle size were measured using a laser particle sizer. Fourier transform infrared spectroscopy was carried out on the samples to identify changes in molecular interactions during plasma processing. The results of our analysis indicate that N2 plasma treatment is an effective method for improving the dispersibility of minute particles of pigment in DI water.

The Relationship Between Adiposity and Risk factors for Cadiovascular Disease at Normal Body Weight Male (정상 체중인 성인 남성에서 지방과다와 심혈관질환의 위험요인간의 관련성)

  • Kwon, Woo-Sung;Kim, Jun-Su;Chae, Jin-Wook;Lee, Keun-Mi;Jung, Seung-Pil;Moon, Yong
    • Journal of Yeungnam Medical Science
    • /
    • v.20 no.1
    • /
    • pp.62-70
    • /
    • 2003
  • Background: Most of all studies about the relation between the health risk and obesity are based on the European and American data. The purpose of this study is to examine the relation between adiposity and risk factors for cardiovacular disease (CVD) in normal weight individuals. Materials and Methods: Normal weight subjects with a body mass index (BMI) between 18.5 and $23kg/m^2$ (76 subjects) and overweight subjects with a BMI between 23 and $25kg/m^2$ (53 subjects) were retained for this study. Normal weight subjects were divided into three group of each adiposity variable, then three group and the overweight group were evaluated for the presence of CVD risk factors and analyze the correlation coefficients between adiposity variables and risk factors controlled for age in normal weight, overweight groups. Using logistic regression analysis, the odds ratio (OR) for the prevalence of risk factors for each group of adiposity variables and the overweight group was estimated relative to the first group in normal weight subjects. Results: Systolic BP, diastolic BP, LDL cholestrol, HDL cholesterol, triglycerides in normal weight subjects were significantly correlated with all adiposity variables (P<0.01). Third group (3.7 for %fat and 4.7 for fat mass)of adiposity variables in the normal weight group and the overweight group (6.6 for %fat and 11.5 for fat mass) tended to have higher ORs compared to first group for risk factor variables. Conclusion: Normal weight subjects with elevated adiposity had higher prevalence of risk factors than normal weights subjects with less adiposity. Measuring of adiposity added additional information of cardiovascular disease risk factors in normal weight subjects.

  • PDF

Electrochemical Characterization of Anti-Corrosion Film Coated Metal Conditioner Surfaces for Tungsten CMP Applications (텅스텐 화학적-기계적 연마 공정에서 부식방지막이 증착된 금속 컨디셔너 표면의 전기화학적 특성평가)

  • Cho, Byoung-Jun;Kwon, Tae-Young;Kim, Hyuk-Min;Venkatesh, Prasanna;Park, Moon-Seok;Park, Jin-Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • Chemical Mechanical Planarization (CMP) is a polishing process used in the microelectronic fabrication industries to achieve a globally planar wafer surface for the manufacturing of integrated circuits. Pad conditioning plays an important role in the CMP process to maintain a material removal rate (MRR) and its uniformity. For metal CMP process, highly acidic slurry containing strong oxidizer is being used. It would affect the conditioner surface which normally made of metal such as Nickel and its alloy. If conditioner surface is corroded, diamonds on the conditioner surface would be fallen out from the surface. Because of this phenomenon, not only life time of conditioners is decreased, but also more scratches are generated. To protect the conditioners from corrosion, thin organic film deposition on the metal surface is suggested without requiring current conditioner manufacturing process. To prepare the anti-corrosion film on metal conditioner surface, vapor SAM (self-assembled monolayer) and FC (Fluorocarbon) -CVD (SRN-504, Sorona, Korea) films were prepared on both nickel and nickel alloy surfaces. Vapor SAM method was used for SAM deposition using both Dodecanethiol (DT) and Perfluoroctyltrichloro silane (FOTS). FC films were prepared in different thickness of 10 nm, 50 nm and 100 nm on conditioner surfaces. Electrochemical analysis such as potentiodynamic polarization and impedance, and contact angle measurements were carried out to evaluate the coating characteristics. Impedance data was analyzed by an electrical equivalent circuit model. The observed contact angle is higher than 90o after thin film deposition, which confirms that the coatings deposited on the surfaces are densely packed. The results of potentiodynamic polarization and the impedance show that modified surfaces have better performance than bare metal surfaces which could be applied to increase the life time and reliability of conditioner during W CMP.

Analysis of Bronchoalveolar Lavage Fluid cells from the Patients of Diffuse Interstitial Lung Diseases (미만성 간질성 폐질환에서 기관지 폐포세척액내의 세포 검사)

  • Kim,, Hyo-Seok;Moon, Soo-Nam;Cheong, Seung-Whan;Lee, Sang-Moo;Kim, Hyeon-Tae;Lee, Guang-Cho;Uh, Soo-Taek;Kim, Yong-Hoon;Park, Choon-Sik;Jin, Byung-Won
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.6
    • /
    • pp.604-615
    • /
    • 1994
  • Background: Analysis of cells in bronchoalveolar lavage(BAL) fluid had been used to predict the histologic changes of the bronchioles and alveoli in patients with interstitial lung diseases(ILD). Definitive diagnosis can be a1so made in some cases of ILD, such as histiocytosis. However, there are a few data of the cellular components in BAL fluid in normal Korean individuals and in patients with ILD. In order to evaluate the role of the cellular analysis of BAL fluid in prediction of alveolitis and differential diagnosis among ILDs, we compared the cellular components in BAL fluid from 50 normal individuals and 86 ILD patients. Method: BAL was performed by instillation and retrievement of normal saline with fiberoptic bronchoscopy. The cell number was counted by Hemocytometer. Differential count was done up to 500 cells on slides prepared by Diff-Quik stain and non-specific esterase stain. We compared the recovery rate(RR), cell numbers(CN), and percentages of each cellular components(CP). Results: The results were as follows: 1) There was no difference in RR, CN and CP between the normal smoker group and normal non-smoker group. 2) Total cell numbers recoverd in BAL fluid increased in collagen vascular diseases(CVD), hypersensitivity pneumonitis(HP), idiopathic pulmonary fibrosis(IPF), and miliary tuberculosis(Mil TBC) groups. 3) The percentage of lymphocytes increased in HP, IPF and Mil TBC groups. Macrophage percentages increased in HP, IPF, and Mil TBC groups. Neutrophil percentages were increased in CVD, HP, IPF and Mil TBC groups. Eosinophil percentages were increased in HP, IPF and Mil TBC groups. The numbers of each cells showed same findings as the percentages did. Conclusion: The analysis of cellular components of BAL fluid can predict the presence of alveolitis in many cases of ILDs. However, It was not helpful in differential diagnosis among ILDs.

  • PDF

Association of Hemoglobin A1c with Visceral Fat Measured by Computed Tomography in Nondiabetic Adults (당뇨병이 없는 농촌지역의 건강한 성인 남녀에서 당화혈색소와 내장지방과의 관계)

  • Han, A Lum;Shin, Sae-Ron;Park, Seong-Hoon;Lee, Jeong Mi
    • Journal of agricultural medicine and community health
    • /
    • v.37 no.4
    • /
    • pp.215-222
    • /
    • 2012
  • Objective: A prediabetes hemoglobin A1c (HbA1c) level of 5.7%-6.4% is considered a risk factor for diabetes mellitus and cardiovascular disease (CVD) in the USA. In this study, we assessed the HbA1c and visceral fat levels as CVD risk factors in health check-up examinees who were not yet diagnosed with diabetes. Methods: Totally, 507 study subject were categorized as per criteria of the American Diabetes Association, depending on whether the HbA1c level was ${\geq}5.7%$ or <5.7%. Lipid levels, blood pressure, BMI (kg/$m^2$), total abdominal, and visceral fat levels were measured by computed tomography. Results: The mean of HbA1c in the male group was larger than the mean in the female group and their values were, respectively, $6.03{\pm}0.82%$ and $5.88{\pm}0.72%$(p<0.05). Only the mean values of age and visceral fat area were different between $HbA1c{\geq}5.7%$ and <5.7% in both male and female group(p<0.05). Visceral fat levels were significantly associated with HbA1c in the group of HbA1c ${\geq}5.7%$ (odds ratio=1.005, 95% CI 1.002~1.008). Conclusions: Visceral fat levels were significantly higher and correlated with the group which HbA1c level is ${\geq}5.7%$. This finding suggests that subjects who have high levels of HbA1c should be carefully monitored during prediabetes and should have chance to have health education programs.

Characterization of SiC nanowire Synthesized by Thermal CVD (열 화학기상증착법을 이용한 탄화규소 나노선의 합성 및 특성연구)

  • Jung, M.W.;Kim, M.K.;Song, W.;Jung, D.S.;Choi, W.C.;Park, C.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.307-313
    • /
    • 2010
  • One-dimensional cubic phase silicon carbide nanowires (${\beta}$-SiC NWs) were efficiently synthesized by thermal chemical vapor deposition (TCVD) with mixtures containing Si powders and nickel chloride hexahydrate $(NiCl_2{\cdot}6H_2O)$ in an alumina boat with a carbon source of methane $(CH_4)$ gas. SEM images are shown that the growth temperature (T) of $1,300^{\circ}C$ is not enough to synthesize the SiC NWs owing to insufficient thermal energy for melting down a Si powder and decomposing the methane gas. However, the SiC NWs could be synthesized at T>$1,300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is T=$1,400^{\circ}C$. The synthesized SiC NWs have the diameter with an average range between 50~150 nm. Raman spectra clearly revealed that the synthesized SiC NWs are forming of a cubic phase (${\beta}$-SiC). Two distinct peaks at 795 and $970 cm^{-1}$ in Raman spectra of the synthesized SiC NWs at T=$1,400^{\circ}C$ represent the TO and LO mode of the bulk ${\beta}$-SiC, respectively. XRD spectra are also supported to the Raman spectra resulting in the strongest (111) peaks at $2{\Theta}=35.7^{\circ}$, which is the (111) plane peak position of 3C-SiC. Moreover, the gas flow rate of 300 sccm for methane is the optimal condition for synthesis of a large amount of ${\beta}$-SiC NW without producing the amorphous carbon structure shown at a high methane flow rate of 800 sccm. TEM images are shown two kinds of the synthesized ${\beta}$-SiC NWs structures. One is shown the defect-free ${\beta}$-SiC NWs with a (111) interplane distance of 0.25 nm, and the other is the stacking-faulted ${\beta}$-SiC NWs. Also, TEM images exhibited that two distinct SiC NWs are uniformly covered with $SiO_2$ layer with a thickness of less 2 nm.

Morphology Control of Nanostructured Graphene on Dielectric Nanowires

  • Kim, Byeong-Seong;Lee, Jong-Un;Son, Gi-Seok;Choe, Min-Su;Lee, Dong-Jin;Heo, Geun;Nam, In-Cheol;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.375-375
    • /
    • 2012
  • Graphene is a sp2-hybridized carbon sheet with an atomic-level thickness and a wide range of graphene applications has been intensely investigated due to its unique electrical, optical, and mechanical properties. In particular, hybrid graphene structures combined with various nanomaterials have been studied in energy- and sensor-based applications due to the high conductivity, large surface area and enhanced reactivity of the nanostructures. Conventional metal-catalytic growth method, however, makes useful applications difficult since a transfer process, used to separate graphene from the metal substrate, should be required. Recently several papers have been published on direct graphene growth on the two dimensional planar substrates, but it is necessary to explore a direct growth of hierarchical nanostructures for the future graphene applications. In this study, uniform graphene layers were successfully synthesized on highly dense dielectric nanowires (NWs) without any external catalysts. We also demonstrated that the graphene morphology on NWs can be controlled by the growth parameters, such as temperature or partial pressure in chemical vapor deposition (CVD) system. This direct growth method can be readily applied to the fabrication of nanoscale graphene electrode with designed structures because a wide range of nanostructured template is available. In addition, we believe that the direct growth growth approach and morphological control of graphene are promising for the advanced graphene applications such as super capacitors or bio-sensors.

  • PDF