• Title/Summary/Keyword: Content-based Image Retrieval

Search Result 317, Processing Time 0.126 seconds

Content-Based Image Retrieval using Scale-Space Theory (Scale-Space 이론에 기초한 내용 기반 영상 검색)

  • 오정범;문영식
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.1
    • /
    • pp.150-150
    • /
    • 1999
  • In this paper, a content-based image retrieval scheme based on scale-space theory is proposed. The existing methods using scale-space theory consider all scales for image retrieval,thereby requiring a lot of computation. To overcome this problem, the proposed algorithm utilizes amodified histogram intersection method to select candidate images from database. The relative scalebetween a query image and a candidate image is calculated by the ratio of histograms. Feature pointsare extracted from the candidates using a corner detection algorithm. The feature vector for eachfeature point is composed of RGB color components and differential invariants. For computing thesimilarity between a query image and a candidate image, the euclidean distance measure is used. Theproposed image retrieval method has been applied to various images and the performance improvementover the existing methods has been verified.

Shape Feature Extraction technique for Content-Based Image Retrieval in Multimedia Databases

  • Kim, Byung-Gon;Han, Joung-Woon;Lee, Jaeho;Haechull Lim
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.869-872
    • /
    • 2000
  • Although many content-based image retrieval systems using shape feature have tried to cover rotation-, position- and scale-invariance between images, there have been problems to cover three kinds of variance at the same time. In this paper, we introduce new approach to extract shape feature from image using MBR(Minimum Bounding Rectangle). The proposed method scans image for extracting MBR information and, based on MBR information, compute contour information that consists of 16 points. The extracted information is converted to specific values by normalization and rotation. The proposed method can cover three kinds of invariance at the same time. We implemented our method and carried out experiments. We constructed R*_tree indexing structure, perform k-nearest neighbor search from query image, and demonstrate the capability and usefulness of our method.

  • PDF

Content-based Image Retrieval Using Color and Chain Code (색상과 Chain Code를 이용한 내용기반 영상검색)

  • 황병곤;정성호;이상열
    • Journal of the Korea Industrial Information Systems Research
    • /
    • v.5 no.2
    • /
    • pp.9-15
    • /
    • 2000
  • In this paper, we proposed a content-based image retrieval method using color and object's complexity for indexing of image database. Generally, the retrieval methods using color feature can not sufficiently include the spatial information in the image. So they are reduced retrieval efficiency. Then we combined object's complexity which extracted from chain code and the conventional color feature. As a result, experiments shooed that the proposed method which considers the shape feature improved performance in conducting content-based search.

  • PDF

Content-Based Image Retrieval using 3rd Order Color Object Relation (3차 칼라 오브젝트 관계에 의한 내용 기반 영상 검색)

  • 최재우;권희용;황희융
    • Proceedings of the KAIS Fall Conference
    • /
    • /
    • pp.208-213
    • /
    • 2000
  • 본 논문은 정지 화상에 대한 CBIR(Content-Based Image Retrieval)방법 중 칼라 특성을 이용해서 영상 내 공간 정보를 충분하게 표현할 수 있는 알고리즘을 제안한다. 일반적으로 칼라 특성을 이용한 CBIR은 영상 내 공간정보를 충분하게 표현하지 못하는 단점을 지니고 있다. 이에 기존 논문에서는 인위적으로 영상을 여러 개로 분할하는 방법 등으로 공간정보를 표현하고자 하였지만 특징벡터의 수가 급격히 늘어남에 따라 검색효율이 저하된다는 단점을 가지고있다. 본 논문에서는 기존의 방법을 칼라 오브젝트의 추출 방법에 따라 1차와 2차 관계에 의한 방법으로 분류하고, 이동, 회전 특히 크기 변화(축소, 확대)에 탁월한 성능을 보이는 칼라 오브젝트의 3차 관계를 이용한 방법을 소개한다. 주어진 영상으로부터 양자화된 24개의 버킷을 생성해서 각 버킷 내의 칼라에 대한 색의 표준 편차로 색의 분산 정도틀 나타내고, 히스토그램의 빈도수가 높은 세 개 버킷의 평균 칼라 위치를 계산해서 그들의 상호 각도를 추출하여 영상의 특징 벡터로 사용한을 제안하였다. 실험결과 기존 방법보다 특히 영상의 크기 변화에 대해 좋은 결과를 얻을 수 있었으며, 계산량도 적어 효율적임을 보여 주었다.

Development of Web-based Bio-Image Retrieval System (웨이블릿 변환을 이용한 실시간 화재 감지 알고리즘)

  • Cheong, Kwang-Ho;Ko, Byoung-Chul;Nam, Jae-Yeal
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.227-230
    • /
    • 2006
  • A content-based image retrieval system using MPEG-7 is designed and implemented in this thesis. The implemented system uses existing MPEG-7 Visual Descriptors. In addition, a new descriptor for efficient retrieval of bio images is proposed and utilized in the developed content-based image retrieval system. Comparing proposed CBSD(Compact Binary Shape Descriptor) with Edge Histogram Descriptor(EHD) and Region Shape Descriptor(RSD), it shows good retrieval performance in NMRR. The proposed descriptor is robust to large modification of brightness and contrast and especially improved retrieval performance to search images with similar shapes. Also proposed system adopts distributed architecture to solve increased server overload and network delay. Updating module of client efficiently reduces downloading time for metadata. The developed system can efficiently retrieve images without causing server's overload.

  • PDF

Building the Domain Ontology for Content Based Image Retrieval System (개념기반 이미지 검색 시스템을 위한 도메인 온톨로지 구축)

  • Kong, Hyun-Jang;Kim, Won-Pil;Oh, Kun-Seok;Kim, Pan-Koo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.81-84
    • /
    • 2002
  • 멀티미디어 분야가 급성장하면서 좀더 효율적으로 멀티미디어 자료의 저장, 처리, 검색을 위한 연구가 진행되고 있다. 특히, 내용기반 시각정보 검색에 있어 지능형 시스템(Intelligent System)을 접목하여 의미적 접근을 시도하는 I-CBIR(Intelligent-Content Based Image Retrieval)에 관한 연구가 진행되고 있다. 또한, 내용기반 이미지검색 시스템에 온톨로지(Ontology)의 이론을 적용하여 이미지에 의미를 부여하여 개념적 검색이 가능하도록 노력하고 있다. 이러한 연구에서 적용된 대형의 온톨로지는 이미지 검색 시스템에 적합하지 않게 너무 방대한 정보를 가지고 있으며, 또한 시대적 변화에 대응하지 못하여 I-CBIR 시스템에서 그 효율성을 제대로 발휘하지 못하고 있다. 따라서 본 논문에서는 많은 대형 온톨로지 중에서 WordNet을 선택하여, WordNet의 구축 방법에 기반한 자동차(Car)에 대한 도메인 온톨로지(Domain Ontology)를 구축해보고, 구축된 도메인 온톨로지를 적용함으로써 더 향상된 I-CBIR 시스템이 되도록 하였다.

  • PDF

Metadata Processing Technique for Similar Image Search of Mobile Platform

  • Seo, Jung-Hee
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.1
    • /
    • pp.36-41
    • /
    • 2021
  • Text-based image retrieval is not only cumbersome as it requires the manual input of keywords by the user, but is also limited in the semantic approach of keywords. However, content-based image retrieval enables visual processing by a computer to solve the problems of text retrieval more fundamentally. Vision applications such as extraction and mapping of image characteristics, require the processing of a large amount of data in a mobile environment, rendering efficient power consumption difficult. Hence, an effective image retrieval method on mobile platforms is proposed herein. To provide the visual meaning of keywords to be inserted into images, the efficiency of image retrieval is improved by extracting keywords of exchangeable image file format metadata from images retrieved through a content-based similar image retrieval method and then adding automatic keywords to images captured on mobile devices. Additionally, users can manually add or modify keywords to the image metadata.

LDesign and implementation of a content-based image retrieval system using the duplicated color histogram and spatial information (중복된 칼라 히스토그램과 공간 정보를 이용한 내용 기반 화상 검색 시스템 설계 및 구현)

  • 김철원;최기호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.889-898
    • /
    • 1997
  • Most general content-based image retrieval techniques use color and texture as retrieval indices. Spatial information is not used to color histogram and color pair based on color retrieval techniques. This paper proposes the selection of a set of representative in the duplicated color histogram, the analysis of spatial information of the selected colors and the image retrieval process based on the duplicated color histogram and spatial information. Two color historgrams for background and object are used in order to decide on color selection in the duplicated color histogram. Spatial information is obtained using a maximum entropy discretization. A retrieval process applies to duplicated color histogram and spatial to retrieve input images and relevant images. As the result of experiment of the image retrieval, improved color his togram and spatial information method hs increased the retrieval effectiveness more the color histogram method and color pair method.

  • PDF

Image Clustering using Color, Texture and Shape Features

  • Sleit, Azzam;Abu Dalhoum, Abdel Llatif;Qatawneh, Mohammad;Al-Sharief, Maryam;Al-Jabaly, Rawa'a;Karajeh, Ola
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.211-227
    • /
    • 2011
  • Content Based Image Retrieval (CBIR) is an approach for retrieving similar images from an image database based on automatically-derived image features. The quality of a retrieval system depends on the features used to describe image content. In this paper, we propose an image clustering system that takes a database of images as input and clusters them using k-means clustering algorithm taking into consideration color, texture and shape features. Experimental results show that the combination of the three features brings about higher values of accuracy and precision.

NPFAM: Non-Proliferation Fuzzy ARTMAP for Image Classification in Content Based Image Retrieval

  • Anitha, K;Chilambuchelvan, A
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2683-2702
    • /
    • 2015
  • A Content-based Image Retrieval (CBIR) system employs visual features rather than manual annotation of images. The selection of optimal features used in classification of images plays a key role in its performance. Category proliferation problem has a huge impact on performance of systems using Fuzzy Artmap (FAM) classifier. The proposed CBIR system uses a modified version of FAM called Non-Proliferation Fuzzy Artmap (NPFAM). This is developed by introducing significant changes in the learning process and the modified algorithm is evaluated by extensive experiments. Results have proved that NPFAM classifier generates a more compact rule set and performs better than FAM classifier. Accordingly, the CBIR system with NPFAM classifier yields good retrieval.