• Title/Summary/Keyword: Electrostatic chuck

Search Result 24, Processing Time 0.07 seconds

Study on Coolant Passage for Improving Temperature Uniformity of the Electrostatic Chuck Surface (정전척 표면의 온도 균일도 향상을 위한 냉매 유로 형상에 관한 연구)

  • Kim, Dae-Hyeon;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.72-77
    • /
    • 2016
  • As the semiconductor production technology has gradually developed and intra-market competition has grown fiercer, the caliber of Si Wafer for semiconductor production has increased as well. And semiconductors have become integrated with higher density. Presently the Si Wafer caliber has reached up to 450 mm and relevant production technology has been advanced together. Electrostatic chuck is an important device utilized not only for the Wafer transport and fixation but also for the heat treatment process based on plasma. To effectively control the high calories generated by plasma, it employs a refrigerant-based cooling method. Amid the enlarging Si Wafers and semiconductor device integration, effective temperature control is essential. Therefore, uniformed temperature distribution in the electrostatic chuck is a key factor determining its performance. In this study, the form of refrigerant flow channel will be investigated for uniformed temperature distribution in electrostatic chuck.

A Study on the Holding of LED Sapphire Substrate Using Alumina Electrostatic Chuck with Fine Electrode Pattern (미세 전극 패턴을 갖는 알루미나 정전척을 이용한 LED용 사파이어 기판 흡착 연구)

  • Kim, Hyung-Ju;Shin, Yong-Gun;Ahn, Ho-Kap;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.4
    • /
    • pp.165-171
    • /
    • 2011
  • In this work, handling of sapphire substrate for LED by using an electrostatic chuck was studied. The electrostatic chuck consisted of alumina dielectric, which was doped with 1.2 wt% $TiO_2$. As the volume resistivity of alumina dielectric was decreased, the electrostatic force was increased by Johnsen-Rahbek effect. The narrower width and gap size of electrode led to the stronger electrostatic force. When alumina dielectric with $3.20{\times}10^{11}{\Omega}{\cdot}cm$ resistivity and 3 mm width/1.5 mm gap sized electrode was used, the strongest electrostatic force in this work was obtained, which value reached to ~14.46 gf/$cm^2$ at 2.5 kV for 4-inch sapphire substrate. This results show that alumina electrostatic chuck with low resistivity and fine electrode pattern is suitable for handling of sapphire substrate for LED.

Coolant Path Geometry for Improved Electrostatic Chuck Temperature Variation (정전척 온도분포 개선을 위한 냉각수 관로 형상)

  • Lee, Ki-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.21-23
    • /
    • 2011
  • Uniformity of plasma etching processes critically depends on the wafer temperature and its distribution. The wafer temperature is affected by plasma, chucking force, He back side pressure and the surface temperature of ESC(electrostatic chuck). In this work, 3D mathematical modeling is used to investigate the influence of the geometry of coolant path and the temperature distribution of the ESC surface. The model that has the coolant path with less change of the cross-sectional area and the curvature shows low standard deviation of the ESC surface temperature distribution than the model with the coolant path of the larger surface area and more geometric change.

Fabrication of 8 inch Polyimide-type Electrostatic Chuck (폴리이미드형 8인치 정전기척의 제조)

  • 조남인;박순규;설용태
    • Journal of the Semiconductor & Display Technology
    • /
    • v.1 no.1
    • /
    • pp.9-13
    • /
    • 2002
  • A polyimide-type electrostatic chuck (ESC) was fabricated for the application of holding 8-inch silicon wafers in the oxide etching equipment. For the fabrication of the unipolar ESC, core technologies such as coating of polyimide films and anodizing treatment of aluminum surface were developed. The polyimide films were prepared on top of thin coated copper substrates for the good electrical contacts, and the helium gas cooling technique was used for the temperature uniformity of the silicon wafers. The ESC was essentially working with an unipolar operation, which was easier to fabricate and operate compared to a bipolar operation. The chucking force of the ESC has been measured to be about 580 gf when the applied voltage was 1.5 kV, which was considered to be enough force to hold wafers during the dry etching processing. The employment of the ESC in etcher system could make 8% enhancement of the wafer processing yield.

  • PDF

Effect of the Si-adhesive layer defects on the temperature distribution of electrostatic chuck (Si-adhesive 층의 불량에 따른 정전척 온도분포)

  • Lee, Ki Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.71-74
    • /
    • 2012
  • Uniformity of the wafer temperature is one of the important factors in etching process. Plasma, chucking force, backside helium pressure and the surface temperature of ESC(electrostatic chuck) affect the wafer temperature. ESC consists of several layers of structure. Each layer has own thermal resistance and the Si-adhesive layer has highest thermal resistance among them. In this work, the temperature distribution of ESC was analyzed by 3-D FEM with various defects and the thickness deviation of the Si-adhesive layer. The result with Si-adhesive layer with the low center thickness deviation shows modified temperature distribution of ESC surface.

A Study on Electrostatic Chuck Cooling by Ceramic Dielectric Material and Coolant path (세라믹 유전체 물질과 냉매 유로 형상에 따른 정전척 냉각에 관한 연구)

  • Kim, Daehyeon;Kim, Kwangsun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.85-89
    • /
    • 2018
  • Temperature uniformity of a wafer in a semiconductor process is a very important factor that determines the overall yield. Therefore, it is very important to confirm the temperature characteristics of the chuck surface on which the wafer is lifted. The temperature characteristics of the chuck depend on the external heat source, the shape of the cooling channel inside the chuck, the material on the chuck surface, and so on. In this study, CFD confirms the change of temperature characteristics according to the stacking order of ceramic materials and inner coolant path on the chuck surface. Finally this study suggests the best cooling condition of electrostatic chuck.

A Study on the Implementation of Optimized Dechucking System (최적 dechucking 시스템 구현에 관한 연구)

  • Seo, Jong-Wan;Suh, Hee-Seok;Shin, Myong-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.106-111
    • /
    • 2007
  • After the semiconductor processing, wafer is attracted by ESC(Electrostatic Chuck) with remaining electric charge. That causes too many problems for examples, sliding of wafer, popping or broken. This paper presents the model of ESC for silicon wafer, which is modeled by electrical circuit component such as capacitor. The simulations using PSpice result in the phenomenon of silicon wafer was charged by ESC. In this paper we suggest the discharging method. for wafer.

A Study on Attractive Force Characteristics of Glass Substrate Using Alumina Electrostatic Chuck by Finite Element Analysis (유한요소해석을 이용한 알루미나 정전척의 글라스 기판 흡착 특성 연구)

  • Lee, Jae Young;Jang, Kyung Min;Min, Dong Kyun;Kang, Jae Gyu;Sung, Gi Hyun;Kim, Hye Dong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.46-50
    • /
    • 2020
  • In this research, the attractive force of Coulomb type electrostatic chuck(ESC), which consisted of alumina dielectric, on glass substrate was studied by using the finite element analysis. The attractive force is caused by the high electrical resistance which occurs in contact region between glass substrate and dielectric layer. This research tries the simple geometrical modeling of ESC and glass substrate with air gap. The influences of the applied voltage, and air gap are investigated. When alumina dielectric with 1014 Ω·cm, 1.5 kV voltage, and 0.01 mm air gap were applied, electrostatic force in this work reached to 4 gf/㎠. This results show that the modeling of air gap is essential to derive the attractive force of the ESC.

Improvement of Sealing Property of Electrostatic Chuck by Applying Polysilazane Sealant (폴리실라잔계 실란트를 이용한 정전척 실링특성 향상 연구)

  • Choi, Jaeyoung;Park, Hyunsu;Son, Min Kyu;Jeong, Chang-oh;Kim, Woo-Byoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.567-574
    • /
    • 2016
  • We have analyzed chemical properties of polysiloxane and polysilazane films, respectively, as sealing materials for electrostatic chuck (ESC) and have investigated the possibility of polysilazane as an alternative sealant to polysiloxane. It has been revealed that Si-O with organic bonding ($Si-CH_3$) existed in polysiloxane films compared to only pure Si-O bonding in polysilazane films. The sealing property of polysilazane has been found outstanding even in a short time of application. In the polysiloxane films containing $H_2O$, pin holes have been found possibly due to $CO_2$ gas evolution, and low adhesion with Si substrate has been observed after heat stress test in connection with the existence of organic bonding. After acid resistance test in 0.5 vol.% HF, 68 wt.% $HNO_3$, and 37 wt.% HCl solution, polyilazane films have shown a longer survival times. Compared to the conventional polysiloxane sealant, polysilazane is expected as a new sealing material because of good thermal and chemical stability.