• Title/Summary/Keyword: Ground control system

Search Result 44, Processing Time 0.279 seconds

A Study on System for Synchronization of Multiple UAVs and Ground Control System (무인이동체 및 지상국 컴퓨터 간의 시간 정보 동기화를 위한 시스템 연구)

  • Lee, Won-Seok;Lee, Woon-Sang;Song, Hyoung-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.11-16
    • /
    • 2020
  • In this paper, system that includes multiple unmanned aerial vehicles (UAVs) are considered. The vehicles are equipped with a mission computer for a specific mission and equipment. The mission equipment operates based on the time of mission computer. Also, data collected by flight computer and mission computer is saved with the time of each operating system. Generally, time offset between multiple computers always exists, though the computers are connected to the Internet. When the data collected by multiple computers is combined, the time offset causes damage on reliability of the combined data. Computers that connected to the Internet are synchronized by network time protocol (NTP). This paper proposes a system that the time of multiple mission computers are synchronized by the same NTP server to minimize the time offset. In the results of the measurement, the system time offset of multiple mission computer is maintained within 10ms from the system time of the server computer.

A Development of Fluxgate Sensor-based Drone Magnetic Exploration System (플럭스게이트 센서 기반 드론 자력탐사 시스템 개발)

  • Noh, Myounggun;Lee, Seulki;Lee, Heuisoon;Ahn, Taegyu
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.208-214
    • /
    • 2020
  • In this study, we have developed a drone magnetic exploration system (proto-type) using a fluxgate magnetic sensor. Hardware of the system consists of a fluxgate magnetometer, an inertial measurement unit (IMU), a GPS, and a communication module. And we have developed monitoring software, which enables it to transmit the measured data to the ground control system (GCS) in real time. The measured magnetic data are finally saved as 1 Hz data after passing through a notch filter and a band-pass filter. For verification of this system, a preliminary test was conducted to check the magnetic responses of a magnetic object first, then the field test was carried out in two iron mines. We tested the developed system on the field test in Pocheon, Gyeonggi and Jeongseon, Gangwon. The magnetic data from the developed drone system was very similar to those from unmanned airship system developed by Korea Institute of Geoscience and Mineral Resources (KIGAM). As a result, preliminary experiment and field test have demonstrated that this system is applicable for outdoor aeromagnetic exploration. It requires more studies to improve filter function and instrument performance to minimize noise in the future.

The development of ground and airborne control system for remotely piloted vehicle (무인항공기의 지상 및 기상 제어 시스템 개발)

  • 김영철;이윤생;김승주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.361-366
    • /
    • 1991
  • A ground and airborne control system for remotely piloted vehicle (RPV) is described. 1) Ground control system 2) airborne control system 3) the method of measuring aircraft attitude and heading 4) autopilot 5) the method of treating emergency status 6) the method of transmitting and receiving communication data 7) the method of displaying aircraft status 8) the characteristics of the aircraft control system are discussed in some detail.

  • PDF

The system for UAV to approach to a ship and to monitor via AIS information (AIS 정보를 활용한 UAV의 효율적인 선박 접근 및 모니터링을 위한 시스템)

  • Kim, Byoung-kug;Hong, Sung-hwa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.502-504
    • /
    • 2021
  • The application area based on UAV(Unmanned Aerial Vehicle) is continuously increasing as time passing by. In particular the UAVs which consist of more than four horizontal propellers and the functionality of VTOL (Vertical Take-Off and Landing) are utilized in diverse platforms and application products due to their safety and aerodynamically simpler design and architectures. Most UAV missions are controlled by GCSs(Ground Control System). The GCSs are generally connected to the internet and get electrical map and environmental information such as temperature, humidity, wind direction and so on. In this paper, we design a system that UAV has capability of approaching to a certain ship and monitoring her efficiently by using AIS(Auto Identification System) information.

  • PDF

Design of the COMS Satellite Ground Control System (통신해양기상위성 관제시스템 설계)

  • Lee, Byeong-Seon;Jeong, Won-Chan;Lee, Sang-Uk;Lee, Jeom-Hun;Kim, Jae-Hun
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.16-24
    • /
    • 2006
  • As a multi-mission GEO satellite, COMS system is being developed jointly by KARI, ETRI, KORDI, KMA, and industries from both abroad and domestic. EADS ASRTIUM is the prime contractor for manufacturing the COMS. ETRI is developing the COMS Ka-band payload and SGCS with the fund from MIC. COMS Satellite Ground Control System (SGCS) will be the only system for monitor and control of the satellite in orbit. In order to fulfill the mission operations of the three payloads and spacecraft bus, COMS SGCS performs telemetry reception and processing, satellite tracking and ranging, command generation and transmission, satellite mission planning, flight dynamics operations, and satellite simulation, By the proper functional allocations, COMS SGCS is divided into five subsystems such as TTC, ROS, MPS, FDS, and CSS. In this paper, functional design of the COMS SGCS is described as five subsystems and the interfaces among the subsystems.

  • PDF

Design and Implementation of Mobile Network Based Long-Range UAV Operational System for Multiple Clients (모바일 네트워크를 이용한 복수의 클라이언트용 무인항공기 원거리 운용 시스템 설계 및 구현)

  • Park, Seong-hyeon;Song, Joon-beom;Roh, Min-shik;Song, Woo-jin;Kang, Beom-soo
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.217-223
    • /
    • 2015
  • This paper describes the design and implementation of a network system for UAV for multiple clients that enables long-range operation based on a commercial mobile network. A prototype data modem is developed with a commercial embedded M2M module in order to provide an access to the mobile network. A central server with a database is constructed to record all of real-time flight and video data and communicate with a ground control system. A GCS is developed for the central control, the single UAV and the smart phone version to be used for different purposes. Performance tests were progressed for data delay, video frame rate and state of clients. Flight tests were also performed to verify the reliability of the modem with respect to altitude.

Development of a Forest Fire Tracking and GIS Mapping Base on Live Streaming (실시간 영상 기반 산불 추적 및 매핑기법 개발)

  • Cho, In-Je;Kim, Gyou-Beom;Park, Beom-Sun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.10
    • /
    • pp.123-127
    • /
    • 2020
  • In order to obtain the overall fire line information of medium and large forest fires at night, the ground control system was developed to determine whether forest fires occurred through real-time video clips and to calculate the location of the forest fires determined using the location of drones, angle information of video cameras, and altitude information on the map to reduce the time required for regular video matches obtained after the completion of the mission. To verify the reliability of the developed function, the error distance of the aiming position information of the flight altitude star and the image camera was measured, and the location information within the reliable range was displayed on the map. As the function developed in this paper allows real-time identification of multiple locations of forest fires, it is expected that overall fire line information for the establishment of forest fire extinguishing measures will be obtained more quickly.

The system for UAV to approach to a ship and to monitor via AIS information (AIS 정보를 활용한 UAV의 효율적인 선박 접근 및 모니터링을 위한 시스템)

  • Kim, Byoung-Kug;Hong, Sung-Hwa;Kang, Jiheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1124-1129
    • /
    • 2021
  • The application area based on UAV (Unmanned Aerial Vehicle) is continuously increasing as time passing by. In particular the UAVs which consist of more than four horizontal propellers and the functionality of VTOL (Vertical Take-Off and Landing) are utilized in diverse platforms and the application products due to their safety and aerodynamically simpler design and architectures. The most UAV missions are controlled by GCSs (Ground Control System). The GCSs are generally connected to the internet and get electrical map and environmental information such as temperature, humidity, wind speed, wind direction and so on. In this paper, we design a system for UAV system to have capability of approaching to a certain ship and monitoring her efficiently by using AIS (Auto Identification System) information. Furthermore we verify that adapting AIS on GCS side is more efficient through experiments.

The proposal of a cryptographic method for the communication message security of GCS to support safe UAV operations (안정적인 UAV 운영을 위한 GCS의 통신메시지의 암호화 제안)

  • Kim, Byoung-Kug;Hong, Sung-Hwa;Kang, Jiheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1353-1358
    • /
    • 2021
  • IoT (Internet of Things) emerges from various technologies such as communications, micro processors and embedded system and so on. The IoT has also been used to UAV (Unmanned Aerial Vehicle) system. In manned aircraft, a pilot and co-pilot should control FCS (Flight Control System) with FBW(Fly By Wire) system for flight operation. In contrast, the flight operation in UAV system is remotely and fully managed by GCS (Ground Control System) almost in real time. To make it possible the communication channel should be necessary between the UAV and the GCS. There are many protocols between two systems. Amongst them, MAVLink (Macro Air Vehicle Link) protocol is representatively used due to its open architecture. MAVLink does not define any securities itself, which results in high vulnerability from external attacks. This paper proposes the method to enhance data security in GCS network by applying cryptographic methods to the MAVLink messages in order to support safe UAV operations.