• Title/Summary/Keyword: PVT

Search Result 210, Processing Time 0.203 seconds

A Study on Performance of Flat Water-type PVT Modules According to Absorber Type (흡열판의 종류에 따른 Unglazed PVT 모듈의 성능 실험 분석)

  • Chun, Jin-Aha;Jeong, Seon-Ok;Kim, Jin-Hee;Kim, Jun-Tae;Cho, In-Soo;Nam, Seung-Baeg
    • 한국태양에너지학회:학술대회논문집
    • /
    • /
    • pp.93-98
    • /
    • 2011
  • A photovoltaic/thermal(PVT)collector produces both thermal energy and electricity simultaneously. The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A PVT module is a combination of PV module with a solar thermal collector which forms one device that converts solar radiation into electricity and heat. In general, there are two different types of PVT module: glazed PVT module and unglazed PVT module. On the other hand, two types of the PVT module can be distinguished according to absorber on PV module rear side: the sheet-and-tube absorber PVT module and the fully wetted absorber PVT module. The absorber collector plays an important function in PVT system. It cools down the PV module, while collecting the thermal energy produced in the form of hot water. The aim of this study is to compare the electrical and thermal performance of two different PVT collectors, one with the rectangular tube and the other with fully wetted absorber PVT collectors. For this paper, the PVT collectors with two different types of thermal absorber were made, and both the thermal and electrical performance of them were measured in outdoor, and the results were compared. The experimental results were analyzed that the thermal efficiency of the fully wetted absorber PVT collector is about 8.7% higher than the sheet-and-tube absorber PVT collector, and for the electrical efficiency, the fully wetted absorber PVT collector had about 7% higher than the rectangular tube absorber.

  • PDF

The Fundamental Researches to Evaluate PVT Module Performance (PVT 모듈 성능 평가를 위한 기초 연구)

  • Kim, Pilkyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.4
    • /
    • pp.1-9
    • /
    • 2018
  • PVT modules commonly can be defined as a combination of PV modules and thermal collectors. After absorbing sun light, electricity and hot water can be actually provided to users simultaneously, which dual outputs (electricity and hot water) have drawn academic interest and industrial activities. Additionally, heat exchange between solar cell and flowing water can enhance solar cell efficiency. Because of PVT modules effectiveness, new international markets and commercial products have made. Especially European, facilities and measurement methods are established to evaluate PVT module performance. However, there are no currently appropriate internationally and domestic standards and facilities to test PVT module performance Herein, to test PVT module performance, indoor thermal simulators and fundamental standard study are considered.

Experimental Performance Comparison of Water Type Glazed and Unglazed PV-Thermal Combined Collectors (실험에 의한 Glazed형과 Unglazed형 액체식 PVT 집열기의 에너지성능 비교 분석 연구)

  • Kim, Jin-Hee;Kang, Jun-Gu;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • v.9 no.4
    • /
    • pp.37-42
    • /
    • 2009
  • Photovoltaic-thermal(PVT) collectors are a combination of photovoltaic modules with solar thermal collectors, forming one device that receives solar radiation and produces electricity and heat simultaneously. The PVT collectors can produce more energy per unit surface area than side by side PV modules and solar thermal collectors. There are two types of water type PVT collectors, depending on the existence of glass cover over PV module; glass-covered(glazed) PVT module, which produces relatively more thermal energy but has lower electrical yield, and uncovered(unglazed) PVT module, which has relatively lower thermal energy with somewhat higher electrical performance. In this paper, the experimental performance of two types of the water-based PVT combined collectors, glazed and unglazed, was analyzed. The electrical and thermal performances of the PVT combined collectors were measured in outdoor conditions, and the results were compared.

A Experimental Performance of PVT Module With Fully Wetted Absorber (전면 액체식 흡열판을 적용한 PVT 모듈의 실험성능)

  • Chun, Jin-Aha;Kim, Jin-Hee;Kim, Jun-Tae;Cho, In-Soo;Nam, Seung-Baeg
    • 한국태양에너지학회:학술대회논문집
    • /
    • /
    • pp.121-126
    • /
    • 2011
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT) module is a combination of PV module with a solar thermal collector which forms one device that converts solar radiation into electricity and heat simultaneously. In general, there are two different types of PVT module: glazed PVT module and unglazed PVT module. On the other hand, two types of the PVT module can be distinguished according to absorber on PV module rear side: the sheet-and-tube absorber PVT module and the fully wetted absorber PVT module. In this paper, the experimental performance of water type unglazed PVT with fully wetted absorber was analyzed. The electrical and thermal performance of the unglazed PVT were measured in outdoor conditions, and the results were analyzed. The experimental results showed that the thermal efficiency of the PVT module was 42% average, and its electrical efficiencies were 15.2% and 14.2% average, respectively, for the mean fluid temperature of $10-20^{\circ}C$ and $21-30^{\circ}C$. Thermal efficiency depends on solar radiation, mean fluid temperature and ambient temperature. The PVT module temperature is related to the cooling effect of the PV module by the fluid of the absorber. The results proved that the electrical efficiency was higher when the mean fluid temperature was lower.

  • PDF

Development of a diagnostic system to detect potato virus T using RT-PCR and nested PCR (감자T바이러스 검정을 위한 RT-PCR 및 Nested PCR 진단시스템 개발)

  • Lee, Si Won;Shin, Yong-Gil;Lee, Jin-Young;Kim, Young-Suk;Yang, Mi Hee;Choi, In-Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.2
    • /
    • pp.99-103
    • /
    • 2015
  • Potato virus T (PVT) is a plant pathogen in the family Betaflexiviridae, group IV single-stranded positive sense RNA viruses. The major host of PVT is potato, and it has been reported in Ullucus tuberosus, Oxalis tuberosa and Tropaeolum tuberosum. This study aimed at developing reverse transcription (RT)-polymerase chain reaction (PCR) and nested PCR techniques for specific detection of PVT. Finally, Two RT-PCR primer sets were developed and verified. The RT-PCR products were amplified to 734 (PVT RT-PCR primer set 6) and 828 bp (PVT RT-PCR primer set 29) long to detect PVT. The nested PCR primer sets [PVT-N70/C20 ($734{\rightarrow}315bp$) and PVT-N75/C30 ($828{\rightarrow}529bp$)] were developed which are high sensitivity and verification for detection of PVT. Furthermore, a modified-positive control plasmid is use to verify contamination of laboratory in PVT detection. This study supported the diagnose PVT in potato or PVT related hosts.

An Experimental Study on Thermal and Electrical Performance of an Air-type PVT Collector (실험에 의한 공기식 PVT 컬렉터의 열·전기 성능에 관한 연구)

  • Kim, Sang-Myung;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.23-32
    • /
    • 2019
  • PVT (Photovoltaic/thermal) system is technology that combines PV and solar thermal collector to produce and use both solar heat and electricity. PVT has the advantage that the energy production per unit area is higher than any single use of PV or solar thermal energy systems because it can produce and use heat and electricity simultaneously. Air-type PVT collectors use air as the heat transfer medium, and the air flow rate and flow pattern are important factors affecting the performance of the PVT collector. In this study, a new air-type PVT collector with improved thermal performance was designed and manufactured. And then thermal and electrical performance and characteristics of air-type PVT collector were analyzed through experiments. For the thermal performance analysis of the PVT collector, the experiment was conducted under the test conditions of ISO 9806:2017 and the electrical performance was analyzed under the same conditions. As a result, the thermal efficiency increased to 26~45% as the inlet flow rate of PVT collector increased from $60{\sim}200m^3/h$. Also, it was confirmed that the air-type PVT collector prevents the PV surface temperature rise according to the operating conditions.

Heat efficiency Analysis of PVT module system using CFD (CFD를 이용한 PVT 모듈 열교환기 성능 해석)

  • Kim, Yangjoon;Kim, Dongkwon;Nam, Seungbaek;Cho, Insoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.112.2-112.2
    • /
    • 2011
  • PVT(Photovoltaic Thermal) 모듈은 태양광과 태양열 에너지를 동시 이용이 가능한 모듈로서 태양광전지(PV, Photovoltaic)모듈에 열교환기를 접합한 형태로 전기에너지뿐만 아니라 열에너지를 동시에 생산할 수 있는 시스템이다. 기존 PV 모듈은 일사량이 많으면 전력 생산량이 증가하는 동시에 PV모듈의 온도가 상승함에 따라 발전 효율이 감소하는 문제점이 있으며 일반적으로 $25^{\circ}C$이상 조건에서 모듈 온도가 $10^{\circ}C$ 증가할수록 발전효율의 약 4~5% 정도 감소하는 것으로 보고되고 있다. PVT 모듈은 기존 태양광모듈에 열교환기를 접합하여 냉각함으로써 PV모듈의 온도를 낮추어 발전효율을 증가시키는 동시에 부가적으로 발생하는 온수를 직접이용하거나 다양한 계통의 보조 열원으로 이용할 수 있는 장점이 있다. 본 연구에서는 수치해석기법(CFD)을 활용하여 PV모듈 냉각 및 온수 발생을 위한 열교환기를 설계하였으며 다양한 형상의 열교환기에 대해 유동해석을 수행하여 최적의 열흡수효율을 갖는 열교환기의 형상을 설계하였다. 또한 최적 설계된 PVT 모듈을 제작하여 실제 태양과 유사한 광원을 갖는 인공태양조건에서의 실내 실험을 통해 PVT 모듈의 성능을 검증하였으며 또한 실제 노상에 설치하여 ASHRAE 93-77의 실험기준과 ECN의 PVT 집열기 성능측정 가이드라인에 따라 옥외 시험평가를 하여 PVT 모듈의 성능 검증을 하였다. 최적 설계된 PVT모듈에 대한 성능평가 결과 기존 PV 모듈보다 발전효율이 약 15%(기존 발전효율 대비) 향상된 결과를 확인하였다.

  • PDF

An Experimental Study of a Water Type Unglazed PV/Thermal Combined Collector Module (액체식 Unglazed PVT 복합모듈의 성능실험연구)

  • Kim, Jin-Hee;Kang, Jun-Gu;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • /
    • pp.184-189
    • /
    • 2008
  • The excess heat that is generated from PV modules can be removed and converted into useful thermal energy. A photovoltaic/thermal(PVT) module is a combination of photovoltaic module with a solar thermal collector, forming one device that converts solar radiation into electricity and heat simultaneously In general, two types of PVT can be distinguished: glass-covered PVT module, which produces high-temperature heat but has a slightly lower electrical yield, and uncovered PVT module, which produces relatively low-temperature heat but has a somewhat higher electrical performance. In this paper, the experimental performance of water type unglazed PVT combined module, analyzed. The electrical and thermal performance of the module were measured in outdoor conditions, and the results are analyzed. The results showed that the thermal efficiency of the PVT module was 27.05% average and its PV efficiency was about 11.85% average, both depending on solar radiation, inlet water temperature and ambient temperature.

  • PDF

The Performance and Efficiency Analysis of PVT system : A Review (선행 연구된 태양광열 복합 시스템의 문헌 검토를 통한 성능 및 효율분석)

  • Euh, Seung-Hee;Kim, Dae-Hyun
    • 한국태양에너지학회:학술대회논문집
    • /
    • /
    • pp.250-255
    • /
    • 2011
  • A Photovoltaic/Thermal(PVT) solar system consists of PV module and thermal absorber plate which convert the absorbed solar radiation into electricity and heat. Meaningful researches and development (R&D) on the PVT technologies have been performed since the 1970s. This paper presents a review of the previous works covering the various types of PVT and their performance analysis in terms of electrical and thermal efficiency. This review compares electrical and thermal efficiency of the different types of PVT collectors and analyzes the parameters affecting PVT performance. Based on the literature review, box charmel type PVT with unglazed, or flat plate PVT with glazed have the highest efficiency among them. From the literature review, R&D should be carried out aiming at improving their overall electrical and thermal efficiency and cutting down the cost, making them more competitive in the energy consumption market.

  • PDF

The Performance and Efficiency Analysis of PVT system : A Review (선행 연구된 태양광열 복합 시스템의 문헌 검토를 통한 성능 및 효율분석)

  • Euh, Seung-Hee;Kim, Dae-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.57-66
    • /
    • 2011
  • A Photovoltaic/Thermal(PVT) solar system consists of PV module and thermal absorber plate which convert the absorbed solar radiation into electricity and heat. Meaningful researches and development (R&D) on the PVT technologies have been performed since the 1970s. This paper presents a review of the previous works covering the various types of PVT and their performance analysis in terms of electrical and thermal efficiency. This review compares electrical and thermal efficiency of the different types of PVT collectors and analyzes the parameters affecting PVT performance. Based on the literature review, box channel type PVT with unglazed, or flat plate PVT with glazed have the highest efficiency among them. From the literature review, R&D should be carried out aiming at improving their overall electrical and thermal efficiency, cutting down the cost, and making them more competitive in the energy consumption market.