• Title/Summary/Keyword: Reflow oven

Search Result 9, Processing Time 0.153 seconds

Thermal design of reflow oven with PCB-module (이송 모듈을 사용한 리플로우 오븐의 열유동해석)

  • Jeong, Won-Jung;Kwon, Hyun-Goo;Cho, Hyung-Hee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.3
    • /
    • pp.29-32
    • /
    • 2006
  • Because of new requirements related to the employment of SMT(Surface Mounting Technology) manufacturing and the diversity of components on high density PCB(Printed Circuit Boards), Thermal control of the reflow process is required in order to achieve acceptable yields and reliability of SMT assemblies. Accurate control of the temperature distribution during the reflow process is one of the major requirements, especially in lead-free assembly. This study has been performed for reflow process using the commercial CFD(Computational Fluid Dynamics) tool for predicting flow and temperature distributions. Porous plate was installed to prevent leakage flow which was one of the major problem of temperature uniformity in the reflow process. There is a separation region where the flow is turned. Outside wall made of porous plate is to prevent and minimize separation region for acquiring uniform temperature during operation. This paper provided design concept from CFD results of the steady state temperature distribution and flow field inside a reflow oven.

  • PDF

The Third National Congress on Fluids Engineering: Thermal design for the vertical type oven of soldering process. (반도체 공정용 수직로 설계를 위한 열유동 제어.)

  • Jeong, Won-Jung;Kwon, Hyun-Goo;Cho, Hyung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • /
    • pp.561-564
    • /
    • 2006
  • Because of new requirements related to the employment of SMT(Surface Mounting Technology) manufacturing and the diversity of components on high density PCB(printed circuit boards), Thermal control of the reflow process is required in oder to achieve acceptable yields and reliability of SMT assemblies. Accurate control of the temperature distribution during the reflow process is one of the major requirements, especially in lead-free assembly. This study has been performed for reflow process using the commercial CFD tool(Fluent) for predicting flow and temperature distributions. There was flow recirculation region that had a weak point in the temperature uniformity. Porous plate was installed to prevent and minimize flow recirculation region for acquiring uniform temperature in oven. This paper provided design concept from CFD results of the steady state temperature distribution and flow field inside a reflow oven.

  • PDF

Reflow of Sn Solder Bumps using Rapid Thermal Annealing(RTA) method and Intermetallic Formation (급속 열처리 방법에 의한 Sn 솔더 범프의 리플로와 금속간 화합물 형성)

  • Yang, Ju-Heon;Cho, Hae-Young;Kim, Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • We studied a growth behavior of Intermetallic compounds(IMCs) during solder bumping with two reflow methods. Ti(50 nm), Cu($1{\mu}m$), Au(50 nm) and Ti(50 nm) thin films were deposited on $SiO_2$/Si wafer using the DC magnetron sputtering system as the under bump metallization(UBM). And the $5{\mu}m$ thick Cu bumps and $20{\mu}m$ thick Sn bumps were fabricated on UBM by electroplating. Sn bumps were reflowed in RTA(Rapid Thermal Annealing) system and convection reflow oven. When RTA system was used, reflow was possible without using flux and IMC thickness formed in the solder interface was thinner than that of a convectional method.

  • PDF

Analysis on the Effect of Operating Conditions on the Thermal Response of Electronic Assemblies during Infrared Reflow Soldering (적외선 리플로 솔더링시 작동조건이 전자조립품의 열적반응에 미치는 영향 분석)

  • Kim, Sung-Kwon;Son, Young-Seok;Shin, Jee-Young
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.1063-1068
    • /
    • 2004
  • A numerical study is performed to predict the effect of operating conditions on the thermal response of electronic assemblies during infrared reflow soldering. The multimode heat transfer within the reflow oven as well as within the electronic assembly is simulated, and the predictions illustrate the detailed thermal responses. Parametric study is performed to determine the thermal response of electronic assemblies to various conditions such as conveyor speed, exhaust velocity, and component emissivity. The predictions of the detailed electronic assembly thermal response can be used in selecting the oven operating conditions to ensure proper soldering and minimization of thermally-induced electronic assembly stresses.

  • PDF

Heat Transfer Analysis of Infrared Reflow Soldering Process for Attaching Electronic Components to Printed Circuit Boards (전자부품의 인쇄회로기판 부착시 적외선 Reflow Soldering과정 열전달 해석)

  • Son, Young-Seok
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.105-115
    • /
    • 1997
  • A numerical study is performed to predict the thermal response of a detailed card assembly during infrared reflow soldering. The card assembly is exposed to discontinuous infrared panel heater temperature distributions and high radiative/convective heating and cooling rates at the inlet and exit of the oven. The convective, radiative and conduction heat transfer within the reflow oven as well as within the card assembly are simulated and the predictions illustrate the detailed thermal responses. The predictions show that mixed convection plays an important role with relatively high frequency effects attributed to buoyancy forces, however the thermal response of the card assembly is dominated by radiation. The predictions of the detailed card assembly thermal response can be used to select the oven operating conditions to ensure proper solder melting and minimization of thermally induced card assembly tresses and warpage.

  • PDF

Sensitivity Analysis on the Thermal Response of Electronic Components during Infrared Reflow Soldering (적외선 리플로 솔더링시 전자부품의 열적반응 민감도 분석)

  • 손영석;신지영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • The thermal response of electronic components during infrared reflow soldering is studied by a two-dimensional numerical model. The convective, radiative and conduction heat transfer within the reflow oven as well as within the card assembly are simulated. Parametric study is also performed to determine the thermal response of electronic components to various conditions such as conveyor velocities, exhaust velocities and emissivities. The results of this study can be used in selecting the oven operating conditions to ensure proper solder melting and minimization of thermally induced card assembly stresses.

Analysis on the Thermal Response of Electronic Assemblies during Forced Convection-Infrared Reflow Soldering (강제대류-적외선 리플로 솔더링시 전자조립품의 열적반응 분석)

  • 손영석;신지영
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.46-54
    • /
    • 2003
  • The thermal response of electronic assemblies during forced convection-infrared reflow soldering is studied. Soldering for attaching electronic components to printed circuit boards is performed in a process oven that is equipped with porous panel heaters, through which air is injected in order to dampen temperature fluctuations in the oven which can be established by thermal buoyancy forces. Forced convection-infrared reflow soldering process with air injection is simulated using a 2-dimensional numerical model. The multimode heat transfer within the reflow oven as well as within the electronic assembly is simulated. Parametric study is also performed to study the effects of various conditions such as conveyor speed, blowing velocity, and electronic assembly emissivity on the thermal response of electronic assemblies. The results of this study can be used in the process oven design and selecting the oven operating conditions to ensure proper solder melting and solidification.

A study on the Joining Properties of Bi-2212 High-Tc Superconducting Tube and Indium Solder (Bi-2212 고온초전도튜브와 인듐솔더의 접합특성연구)

  • Oh, S.Y.;Hyun, O.B.;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.179-183
    • /
    • 2006
  • As a material for SFCL(Superconducting Fault Current Limiter), BSCCO tube with metal stabilizer is a promising candidate, assuring the stability and large power capacity, For the application, the proper soldering technique, which overcome the difficulties of the joining between BSCCO and metal stabilizer, is required. In this study, after soldering In-Bi solder and In-Sn solder with BSCCO superconductor, welding properties between BSCCO and solders were investigated. Because ceramic materials is difficult to weld, Ag electro-plating on BSCCO 2212 is used for intermetallic layer. To find out the best welding condition for superconductor, soldering is tested in the maximum temperature from $155^{\circ}C\;to\;165^{\circ}C$ in the reflow oven. By investigating the composition and thickness of IMC (lntermetallic Compound) created in the reaction of Ag with solder, we analyzed the welding properties of High-Tc superconductor from a micro point of view.

  • PDF

Reflow Profiling The Benefits of Implementing a Ramp-to-Spike Profile

  • AIM
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • /
    • pp.17-17
    • /
    • 2000
  • The issue of reflow profiling continues to be a complex topic. The pains often associated with profiling can be reduced greatly if certain guidelines are followed and if there is a strong understanding of the variables that can be encountered during the reflow process. This paper shall discuss the appropriate guidelines and trouble shooting methods for reflow profiling, and in particular shall focus upon the benefits of implementing the linear ramp-to-spike profile. Delta T(T) is defined as the variation of temperature found on an assembly during the reflow process. Too large of a T can result in soldering defects, so to combat T a Ramp-Soak-Spike(RSS) reflow profile often is utilized. However, when using a newer-style reflow oven, the T often is minimized or eliminated, thus, the soak zone of the reflow profile becomes an unnecessary step. Because of this, the implementation of a linear Ramp-To-Spike(RTS) reflow profile should be considered. Benefits such as reduced energy costs, reduced solder defects, increased efficiency, improved wetting, and a simplification of the reflow profile process may be experienced when using the RTS profile. Included in this paper are the suggested process parameters for setting up the RSS and RTS profiles and the chemical and metallurgical reactions that occur at each set point of these profiles. The paper concludes with a discussion and pictures of several profile-related defects. Each of these defects is described, analyzed, and instructions are given for troublshooting these defects.

  • PDF