• 제목/요약/키워드: Substrate temperature

검색결과 1,273건 처리시간 0.909초

RF 스퍼터링법에 의한 SCT 박막의 기판온도 영향 (Influence of Substrate Temperature of SCT Thin Film by RF Sputtering Method)

  • 김진사;오용철;조춘남;이동규;신철기;김충혁
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • v.53 no.10
    • /
    • pp.505-509
    • /
    • 2004
  • The (Sr/sub 0.9/Ca/sub 0.1/)TiO₃(SCT) thin films are deposited on Pt-coated electrode(Pt/TiN/SiO₂/Si) using RF sputtering method at various substrate temperature. The optimum conditions of RF power and Ar/O₂ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin film was about 18.75[Å/min]. The crystallinity of SCT thin films were increased with increase of substrate temperature in the temperature range of 100~500[℃]. The dielectric constant of SCT thin films were increased with the increase of substrate temperature, and changed almost linearly in temperature ranges of -80~+90[℃]. The current-voltage characteristics of SCT thin films showed the increasing leakage current as the substrate temperature increases.

기판온도에 따른 (Ba,Sr)TiO$_3$ 박막의 구조적 특성 (Structural Properties of (Ba,Sr)TiO$_3$ Thin Films with Substrate Temperature)

  • 이상철;임성수;정장호;배선기;이영희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • /
    • pp.649-652
    • /
    • 1999
  • The (Ba, Sr)TiO$_3$(BST) thin films were fabricated on Pt/Ti/SiO$_2$/Si substrate by RF sputtering technique. The structural properties of the BST thin films were investigated with substrate temperature by XRD, SEM, EDS and AES depth profils. Increasing the substrate temperature, barium multi titanate phases were decreased. The BST thin film had a structure of perovskite type, and had peaks of (100), (200) at the substrate temperature of 50$0^{\circ}C$. When the BST thin films were deposited at the substrate temperature of 50$0^{\circ}C$, the composition ratio of Ba/sr was 52/48.

  • PDF

Effect of the Substrate Temperature on the Copper Oxide Thin Films

  • 박주연;강용철
    • 한국진공학회:학술대회논문집
    • /
    • /
    • pp.71-71
    • /
    • 2010
  • Copper oxide thin films were deposited on the p-type Si(100) by r.f. magnetron sputtering as a function of different substrate temperature. The deposited copper oxide thin films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), spectroscopic ellipsometry (SE), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The SEM and SE data show that the thickness of the copper oxide films was about 170 nm. AFM images show that the surface roughness of copper oxide films was increased with increasing substrate temperature. As the substrate temperature increased, monoclinic CuO (111) peak appeared and the crystal size decreased while the monoclinic CuO (-111) peak was independent on the substrate temperature. The oxidation states of Cu 2p and O 1s resulted from XPS were not affected on the substrate temperature. The contact angle measurement was also studied and indicated that the surface of copper oxide thin films deposited high temperature has more hydrophobic surface than that of deposited at low temperature.

  • PDF

펄스 레이저 증착법으로 성장된 ZnO 막의 광학 특성 (Optical Properties of ZnO Films Grown by Pulsed Laser Deposition)

  • 조신호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • /
    • pp.113-114
    • /
    • 2005
  • We present the effect of substrate temperature on the structural and optical properties of ZnO films grown on sapphire substrate by pulsed laser deposition. Growing at higher substrate temperature results in an increase in the surface roughness. The optimum c-axis orientation of the ZnO films occurs at the substrate temperature of 700$^{\circ}C$ The decay time shows a rapid increase in the substrate temperature from 400$^{\circ}C$ to 500$^{\circ}C$ and falls down gradually as the substrate temperature is approached to 700$^{\circ}C$.

  • PDF

기판온도에 따른 (Ba,Sr)$TiO_3$ 박막의 유전특성 (Dielectric Properties of (Ba,Sr)$TiO_3$ Thin Films with Substrate Temperature)

  • 이상철;정장호;배선기;이영희
    • 대한전기학회:학술대회논문집
    • /
    • /
    • pp.1879-1881
    • /
    • 1999
  • (Ba,Sr)$TiO_3$[BST] thin films were fabricated on Pt/Ti/$SiO_2$/Si substrate by RF sputtering. We investigated the effects of substrate temperature on the structural and dielectric properties of BST thin films. Increasing the substrate temperature, barium multi titanate phases were decreased, and BST (100), (200) peaks were increased. The relative dielectric constant and dielectric loss of the BST thin films at the substrate temperature of $500^{\circ}C$ were 300 and 0.018, respectively at l[kHz]. In all films, the dielectric constants decreased. Dielectric losses increased as increasing the frequency. The switching voltage was 5V of the BST thin films at the substrate temperature of $500^{\circ}C$.

  • PDF

기판온도에 따른 PZT(4060)/(6040) 다층 박막의 유전 특성 (Dielectric Properties of PZT(4060/6040) Multilayered Thin Films with Substrate Temperature)

  • 한상욱;이상헌;이성갑;배선기;이영희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • /
    • pp.667-670
    • /
    • 2004
  • The dielectric properties of PZT(4060)/(6040) multilayered thin films with substrate temperature were investigated. PZT(4060)/(6040) thin films were deposited by RF sputtering method on Pt/Ti/$SiO_2$/Si substrates with different substrate temperature of $200{\sim}700^{\circ}C$. Increasing the substrate temperature, perovskite structure was increased, and PZT (001), (110), (002), (200) peaks were increased. The relative dielectric constant and dielectric loss of PZT(4060)/(6040) multilayered thin films at the substrate temperature of $700^{\circ}C$ were 843 and 2.45, respectively at 1000(Hz).

  • PDF

Al-doped ZnO 박막의 기판 온도에 따른 전기적, 광학적 특성 (The Effect of Different Substrate Temperature on the Electrical Properties of Al-doped ZnO Thin Films)

  • 김봉석;김응권;이규일;오수영;송준태
    • 전기학회논문지
    • /
    • v.56 no.10
    • /
    • pp.1782-1785
    • /
    • 2007
  • In this paper, the effect of substrate temperature on structural, electrical and optical properties of aluminium-doped zinc oxide (AZO) films were investigated. AZO thin films were prepared on glass substrate by pulsed DC magnetron sputtering technique. The properties of AZO were measured by using XRD, AFM, UV spectrophotometer, and hall effect measurement system. The resistivity of AZO films was improved under the condition of high substrate temperature. The resistivity decreased from $9.95{\times}10^{-2}\;{\Omega}-cm\;to\;1.1{\times}10^{-3}\;{\Omega}-cm$ as a result of high substrate temperature and the average transmittances in visible range were above 80%.

SBN 세라믹 박막의 기판온도에 따른 영향 (Influence of Substrate Temperature of SBN Ceramic Thin Film)

  • 김진사;오용철;신철기;김응권;소병문;송민종;김충혁
    • 한국전기전자재료학회:학술대회논문집
    • /
    • /
    • pp.213-214
    • /
    • 2008
  • The $Sr_{0.7}Bi_{2.3}Nb_2O_9$(SBN) thin films are deposited on Pt-coated electrode(Pt/Ti/SiO2/Si) using RF sputtering method at various substrate temperature. The optimum conditions of RF power and Ar/O2 ratio were 60[W] and 70/30, respectively. The crystallinity of SBN thin films were increased with increase of substrate temperature in the temperature range of 100~400[$^{\circ}C$]. The capacitance of SBN thin films were increased with the increase of substrate temperature.

  • PDF

기판 온도 변화에 따른 AlN 박막 성장에 잔류 산소가 미치는 영향 (Influence of Residual Oxygen on the growth of AlN Thin Films with Substrate Temperature)

  • 김병균;이을택;김응권;정석원;노용한
    • 한국전기전자재료학회논문지
    • /
    • v.21 no.5
    • /
    • pp.463-467
    • /
    • 2008
  • Aluminum nitride (AlN) thin films have been deposited on Au electrodes by using reactive RF magnetron sputtering method in a gas mixture of Ar and $N_2$ at different substrate temperature. It was found that substrate temperature was varied in the range up to $400^{\circ}C$, highly c-axis oriented film can be obtained at $300^{\circ}C$ with full width at half maximum (FWHM) $3.1^{\circ}$. Increase in surface roughness from 3.8 nm to 5.9 nm found to be associated with increase in grain size, with substrate temperature; however, the AlN film fabricated at $400^{\circ}C$ exhibited a granular type of structure with non-uniform grains. The Al 2p and N 1s peak in the X-ray photoelectron spectroscopy (XPS) spectrum confirmed the formation of Al-N bonds. The XPS spectrum also indicated the presence of oxynitrides and oxides, resulting from the presence of residual oxygen in the vacuum chamber. It is concluded that the AlN film deposited at substrate temperature of $300^{\circ}C$ exhibited the most desirable properties for the application of high-frequency surface acoustic devices.

Plasma Etching Process based on Real-time Monitoring of Radical Density and Substrate Temperature

  • Takeda, K.;Fukunaga, Y.;Tsutsumi, T.;Ishikawa, K.;Kondo, H.;Sekine, M.;Hori, M.
    • 한국진공학회:학술대회논문집
    • /
    • /
    • pp.93-93
    • /
    • 2016
  • Large scale integrated circuits (LSIs) has been improved by the shrinkage of the circuit dimensions. The smaller chip sizes and increase in circuit density require the miniaturization of the line-width and space between metal interconnections. Therefore, an extreme precise control of the critical dimension and pattern profile is necessary to fabricate next generation nano-electronics devices. The pattern profile control of plasma etching with an accuracy of sub-nanometer must be achieved. To realize the etching process which achieves the problem, understanding of the etching mechanism and precise control of the process based on the real-time monitoring of internal plasma parameters such as etching species density, surface temperature of substrate, etc. are very important. For instance, it is known that the etched profiles of organic low dielectric (low-k) films are sensitive to the substrate temperature and density ratio of H and N atoms in the H2/N2 plasma [1]. In this study, we introduced a feedback control of actual substrate temperature and radical density ratio monitored in real time. And then the dependence of etch rates and profiles of organic films have been evaluated based on the substrate temperatures. In this study, organic low-k films were etched by a dual frequency capacitively coupled plasma employing the mixture of H2/N2 gases. A 100-MHz power was supplied to an upper electrode for plasma generation. The Si substrate was electrostatically chucked to a lower electrode biased by supplying a 2-MHz power. To investigate the effects of H and N radical on the etching profile of organic low-k films, absolute H and N atom densities were measured by vacuum ultraviolet absorption spectroscopy [2]. Moreover, using the optical fiber-type low-coherence interferometer [3], substrate temperature has been measured in real time during etching process. From the measurement results, the temperature raised rapidly just after plasma ignition and was gradually saturated. The temporal change of substrate temperature is a crucial issue to control of surface reactions of reactive species. Therefore, by the intervals of on-off of the plasma discharge, the substrate temperature was maintained within ${\pm}1.5^{\circ}C$ from the set value. As a result, the temperatures were kept within $3^{\circ}C$ during the etching process. Then, we etched organic films with line-and-space pattern using this system. The cross-sections of the organic films etched for 50 s with the substrate temperatures at $20^{\circ}C$ and $100^{\circ}C$ were observed by SEM. From the results, they were different in the sidewall profile. It suggests that the reactions on the sidewalls changed according to the substrate temperature. The precise substrate temperature control method with real-time temperature monitoring and intermittent plasma generation was suggested to contribute on realization of fine pattern etching.

  • PDF