• Title/Summary/Keyword: Wafer Map

Search Result 3, Processing Time 0.057 seconds

Wafer Map Image Analysis Methods in Semiconductor Manufacturing System (반도체 공정에서의 Wafer Map Image 분석 방법론)

  • Yoo, Youngji;An, Daewoong;Park, Seung Hwan;Baek, Jun-Geol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • In the semiconductor manufacturing post-FAB process, predicting a package test result accurately in the wafer testing phase is a key element to ensure the competitiveness of companies. The prediction of package test can reduce unnecessary inspection time and expense. However, an analysing method is not sufficient to analyze data collected at wafer testing phase. Therefore, many companies have been using a summary information such as a mean, weighted sum and variance, and the summarized data reduces a prediction accuracy. In the paper, we propose an analysis method for Wafer Map Image collected at wafer testing process and conduct an experiment using real data.

Analytic Map Algorithms of DDI Chip Test Data (DDI 칩 테스트 데이터 분석용 맵 알고리즘)

  • Hwang Kum-Ju;Cho Tae-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.1
    • /
    • pp.5-11
    • /
    • 2006
  • One of the most important is to insure that a new circuit design is qualified far release before it is scheduled for manufacturing, test, assembly and delivery. Due to various causes, there happens to be a low yield in the wafer process. Wafer test is a critical process in analyzing the chip characteristics in the EDS(electric die sorting) using analytic tools -wafer map, wafer summary and datalog. In this paper, we propose new analytic map algorithms for DDI chip test data. Using the proposed analytic map algorithms, we expect to improve the yield, quality and analysis time.

  • PDF

Wafer Map Defect Pattern Classification with Progressive Pseudo-Labeling Balancing (점진적 데이터 평준화를 이용한 반도체 웨이퍼 영상 내 결함 패턴 분류)

  • Do, Jeonghyeok;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • /
    • pp.248-251
    • /
    • 2020
  • 전 반도체 제조 및 검사 공정 과정을 자동화하는 스마트 팩토리의 실현에 있어 제품 검수를 위한 검사 장비는 필수적이다. 하지만 딥 러닝 모델 학습을 위한 데이터 처리 과정에서 엔지니어가 전체 웨이퍼 영상에 대하여 결함 항목 라벨을 매칭하는 것은 현실적으로 불가능하기 때문에 소량의 라벨 (labeled) 데이터와 나머지 라벨이 없는 (unlabeled) 데이터를 적절히 활용해야 한다. 또한, 웨이퍼 영상에서 결함이 발생하는 빈도가 결함 종류별로 크게 차이가 나기 때문에 빈도가 적은 (minor) 결함은 잡음처럼 취급되어 올바른 분류가 되지 않는다. 본 논문에서는 소량의 라벨 데이터와 대량의 라벨이 없는 데이터를 동시에 활용하면서 결함 사이의 발생 빈도 불균등 문제를 해결하는 점진적 데이터 평준화 (progressive pseudo-labeling balancer)를 제안한다. 점진적 데이터 평준화를 이용해 분류 네트워크를 학습시키는 경우, 기존의 테스트 정확도인 71.19%에서 6.07%-p 상승한 77.26%로 약 40%의 라벨 데이터가 추가된 것과 같은 성능을 보였다.

  • PDF