• Title/Summary/Keyword: thin film

Search Result 9,269, Processing Time 0.111 seconds

Preparation of Iron Oxide Thin Films by Vacuum Evaporation Method and Its Electrical Properties (진공증착법에 의한 산화철박막의 제조 및 전기적특성)

  • 조경형;오재희
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.6
    • /
    • pp.87-93
    • /
    • 1985
  • The hematite the magetite and the maghemite thin film were prepared by oxidation and reductino of the vaccum-evaporated iron thin film. Interre;atoms between film preparation process and the electrical properties were investigated. At room temperature the electrical conductivity of the iron the hematite the magnetite and the maghemite thin film were $1{\times}10^4\Omega^{-1}cm^{-1}$, 2{\times}10^{-5}\Omega^{-1}cm^{-1}$, $3{\times}10^{-5}\Omega^{-1}cm^{-1}$, and $4{\times}10^{-5}\Omega^{-1}cm^{-1}$, resp-ectively. The surface of each thin film was dense and homogeneous. At the temperature that the iron thin film was converted into the hematite thin film the electrical conductivity decreased rapidly and the electrical con-ductivity of the hematite thin film increased as temperature increased. The hematite thin film was reduced to the magnetite thin film in H2 atmosphere. The electrical conductivity decreased rapidly at the temperature that the maghemite thin film is formed by oxidation of the magnetite thin film and the electrical conductivity of the maghemite thin film increased as temperature increased.

  • PDF

Microstructure and Morphology of Titanium Thin Films Deposited by Using Shadow Effect (그림자효과를 이용하여 증착한 타이타늄 박막의 미세구조 및 형상)

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.709-714
    • /
    • 2019
  • In order to observe the microstructure and morphology of porous titanium -oxide thin film, deposition is performed under a higher Ar gas pressure than is used in the general titanium thin film production method. Black titanium thin film is deposited on stainless steel wire and Cu thin plate at a pressure of about 12 Pa, but lustrous thin film is deposited at lower pressure. The black titanium thin film has a larger apparent thickness than that of the glossy thin film. As a result of scanning electron microscope observation, it is seen that the black thin film has an extremely porous structure and consists of a separated column with periodic step differences on the sides. In this configuration, due to the shadowing effect, the nuclei formed on the substrate periodically grow to form a step. The surface area of the black thin film on the Cu thin plate changes with the bias potential. It has been found that the bias of the small negative is effective in increasing the surface area of the black titanium thin film. These results suggest that porous titanium-oxide thin film can be fabricated by applying the appropriate oxidation process to black titanium thin film composed of separated columns.

Ability of Nitride-doped Diamond Like Carbon Thin Film as an Alignment Layer according to Deposition Methods (배향막으로 사용된 NDLC 박막의 증착방법에 따른 능력)

  • Kim, Young-Hwan;Kim, Byoung-Yong;Oh, Byoung-Yun;Kang, Dong-Hun;Park, Hong-Gyu;Lee, Kang-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.431-431
    • /
    • 2007
  • In this paper, the LC alignment characteristics of the NDLC thin film deposited by PECVD and sputtering were reported respectively. The NDLC thin film deposited using sputter showed uniform LC alignment at the 1200 eV of the ion beam intensity and pretilt angle was about $2^{\circ}$ while the NDLC thin film deposited using the PECVD showed uniform LC alignment and high pretilt angle at the 1800 eV of the ion beam intensity. Concerning the ion beam intensity, uniform LC alignment of the NDLC thin film deposited by the sputtering was achieved at the lower intensity. And the pretilt angle of the NDLC thin film deposited by sputter was higher than those of NDLC thin film that was deposited using the PECVD. The uppermost of the thermal stability of NDLC thin film was $200^{\circ}C$, respectively. However, NDLC thin film deposited by the PECVD showed stability at high temperature without defects, compared to NDLC thin film deposited by the sputter.

  • PDF

Surface Chemical Reactions for Metal Organic Semiconductor Films by Alternative Atomic Layer Deposition and Thermal Evaporation

  • Kim, Seong Jun;Min, Pok Ki;Lim, Jong Sun;Kong, Ki-Jeong;An, Ki-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.166.2-166.2
    • /
    • 2014
  • In this work, we demonstrated a facile and effective method for deposition of metal tetraphenylporphyrin (MTPP) thin film by a combined a thermal evaporation (TE) and atomic layer deposition (ALD). For the deposition of Zn-TPP thin film, Tetraphenylporphyrin (TPP) and diethyl zinc (DEZ) were used as organic and inorganic materials, respectively. Optimum conditions for the deposition of Zn-TPP thin film were established systematically: (1) the exposure time of DEZ as inorganic precursor and (2) the substrate temperature were adjusted, respectively. As a result, we verified that the surface reaction between organic semiconductor (TPP) and metal atom (Zn) was ALD process. In addition, we calculated activation energy by using Arrhenius equation for the substrate temperature versus area change rate of pyrrolic nitrogen. The surface and interface reactions between TPP with Zn were investigated by X-ray photoelectron spectroscopy, Raman spectroscopy, UV-vis spectroscopy, and scanning electron microscopy. These results show a facile and well-controllable fabrication technique for the metal-organic thin film for future electronic applications.

  • PDF

High Efficiency Thin Film Photovoltaic Device and Technical Evolution for Silicon Thin Film and Cu (In,Ga)(Se,S)

  • Sin, Myeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.88-88
    • /
    • 2012
  • High efficiency thin film photovoltaic device technology is reviewed. At present market situation, the industrial players of thin film technologies have to confront the great recession and need to change their market strategies and find technical alternatives again. Most recent technology trends and technical or industrial progress for Silicon thin film and CIGS are introduced and common interests for high efficiency and reliability are discussed.

  • PDF

A Study on the Change of Si Thin Film Characteristics to Find Design Rules for Sputtering Equipment (스퍼터 장비의 설계 룰을 찾기 위한 Si박막 특성 변화 연구)

  • Kim, Bo-Young;Kang, Seo Ik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.100-105
    • /
    • 2020
  • Recently, as display and semiconductor devices have been miniaturized and highly integrated, there is a demand for optimization of the structural characteristics of the thin film accordingly. The sputtering device has the advantage of stably obtaining a desired thin film depending on the material selected for the target. However, due to the structural characteristics of the sputtering equipment, the structural characteristics of the film may be different depending on the incidence angle of the sputtering target material to the substrate. In this study, the characteristics of the thin film material according to the scattering angle of the target material and the incidence position of the substrate were studied to find the optimization design rule of the sputtering equipment. To this end, a Si thin film of 1 ㎛ or less was deposited on the Si(100) substrate, and then the microstructure, reflectance, surface roughness, and thin film crystallinity of the thin film formed for each substrate location were investigated. As a result of the study, it was found that as the sputter scattering angle increased and the substrate incident angle decreased, the gap energy along with the surface structure of the thin film increased from 1.47 eV to 1.63 eV, gradually changing to a non-conductive tendency.

As ZnO2 Thin Film Manufacturing Time Increases, the Thin Film Particle Growth Plane and a Study on the Direction of Particle Growth (ZnO2 박막 제조 시간의 증가에 따라 박막 입자 성장면과 입자 성장 방향에 관한 연구)

  • Jung, Jin
    • Journal of the Chosun Natural Science
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2021
  • A zinc oxide thin film was made by varying the deposition time on the silicon(110) substrate by using a radio frequency sputtering time of 60 minutes, 120 minutes and 180 minutes. As a result of analyzing the grain growth surface of the ZnO2 thin film using an X-ray diffraction apparatus, the directions of the main growth plane (002) and (103) planes of the thin film were significantly affected by the deposition time. As a result of observing the particle growth of the ZnO2 thin film through an electron scanning microscope, it was observed that in the initial stage of deposition of the ZnO2 thin film, an incubation time was required during which growth was stagnant, and then particle growth occurred again after a certain period of time. As a result of chemical analysis of the ZnO2 thin film, the increase in the deposition time did not change with the amount of oxygen in the ZnO2 thin film, but a change in the composition of Zn was observed, indicating that the deposition time of the thin film had an effect on the Zn component in the thin film.

Preparation of a PVDF (Polyvinylidene Fluoride) Thin Film Grown by Using the Method of Electric Field Application (전계인가법을 이용한 PVDF 박막의 제작과 특성에 대한 연구)

  • 장동훈;강성준;윤영섭
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.76-79
    • /
    • 2000
  • The 3$\mu\textrm{m}$-thick PVDF (Polyvinyiidene fluoride) thin film have been prepared using physical vapor deposition with electric field, and its FT-IR specrum, dielectric property and electric conduction phenomenon have been investigated. Since the characteristic peaks ate detected at 509.45 and 1273.6〔cm〕 in the FT-IR spectrum, we are confirmed that the ${\beta}$ -phase is dominant in the PVDF thin film. In the results of dielectric properties, the PVDF thin film shows anomalous dispersion, i.e. gradual decrease of dielectric constant with increase of frequency, and also that the dielectric absorption point changes from 200Hz to 7000Hz with increasing temperature of thin film, which is consistent with the Debye's theory. The activation energy (ΔH) obtained from temperature dependence of dielectric loss is 21.64 ㎉/㏖. We confirm that the electric conduction mechanism of PVDF thin film is dominated by ionic conduction by investigating the dependence of the leakage current of the thin film on the temperature and the electric field.

  • PDF