2-TYPE SURFACES AND QUADRIC HYPERSURFACES SATISFYING $\langle \Delta x, x \rangle = \text{const.}$

Changrim Jang and Haerae Jo

Abstract. Let M be a connected n-dimensional submanifold of a Euclidean space E^{n+k} equipped with the induced metric and Δ its Laplacian. If the position vector x of M is decomposed as a sum of three vectors $x = x_1 + x_2 + x_0$ where two vectors x_1 and x_2 are non-constant eigenvectors of the Laplacian, and x_0 is a constant vector, then, M is called a 2-type submanifold. In this paper we showed that a 2-type surface M in E^3 satisfies $\langle \Delta x, x - x_0 \rangle = c$ for a constant c, where $\langle \cdot, \cdot \rangle$ is the usual inner product in E^3, then M is an open part of a circular cylinder. Also we showed that if a quadric hypersurface M in a Euclidean space satisfies $\langle \Delta x, x \rangle = c$ for a constant c, then it is one of a minimal quadric hypersurface, a general cone, a hypersphere, and a spherical cylinder.

1. Introduction

Let M be an n-dimensional submanifold of the $(n+k)$-dimensional Euclidean space E^{n+k}, equipped with the induced metric. Denote by Δ the Laplacian of M. If the position vector x of M in E^{n+k} can be decomposed as a finite sum of non-constant eigenvectors of Δ, we shall say that M is of finite-type. More precisely, M is said to be of q-type if the position vector x of M can be expressed as in the following form:

$$x = x_0 + x_{i_1} + \cdots + x_{i_q},$$

where x_0 is a constant vector, and x_{i_j} ($j = 1, \cdots, q$) are non-constant vectors in E^{n+k} such that $\Delta x_{i_j} = \lambda_{i_j} x_{i_j}$, $\lambda_{i_j} \in R$, $\lambda_{i_1} < \cdots < \lambda_{i_q}$. The notion of finite-type submanifolds has been introduced by B.-Y. Chen [1]. Many results concerning this subject are obtained during last three decades. One of the interesting research areas on this subject is a classification of 2-type submanifolds. Th.Hasanis and Th.Vlachos proved that the only 2-type surface in the three dimensional sphere S^3 is an open part of a product of two circles of different radii [4]. Also they proved that a spherical hypersurface M is of 2-type if and only if it
has constant scalar curvature and mean curvature [5]. In [2] B.-Y. Chen studied a special 2-type surface M in E^3 whose position vector x can be decomposed as a sum of two non-constant eigenvectors $x = x_1 + x_2$, $\Delta x_1 = 0$, $\Delta x_2 = \lambda x_2$, $0 \neq \lambda \in \mathbb{R}$. Such a 2-type surface is said to be of null 2-type. Especially he proved that the only null 2-type surface in E^3 is a circular cylinder. Many studies on null 2-type submanifolds are followed. But until now generally 2-type surfaces are not classified. We can notice that every known finite-type hypersurface M satisfies the condition $\langle \Delta x, x \rangle = c$ for a constant c, where x is the position vector of M and $\langle \ , \ \rangle$ denotes the usual inner product in Euclidean space. Note that the condition $\langle \Delta x, x \rangle = c$ for a constant c is not coordinate invariant. Sometimes a parallel translation is necessary to see that this condition can be satisfied. So we would like to study finite-type submanifold satisfying the condition $\langle \Delta x, x \rangle = c$ for a constant c. In Section 3 we will show that if a 2-type surface M in E^3 satisfies the condition $\langle \Delta x, x - x_0 \rangle = c$ for a constant c, then it is an open part of a circular cylinder. In [3] B.-Y. Chen, F. Dillen and H. Z. Song proved that if M is a quadric hypersurface of finite-type in a Euclidean space, then M is one of a minimal quadric hypersurface, a spherical cylinder, and a hypersphere. In Section 4, we will show that if a quadric hypersurface M in a Euclidean space satisfies the condition $\langle \Delta x, x \rangle = c$ for a constant c, then it is one of a minimal quadric hypersurface, a generalized cone, a hypersphere, and a spherical cylinder.

2. Preliminaries

Consider an n-dimensional submanifold M of E^{n+1} and denote ∇ and $\bar{\nabla}$ the usual Riemannian connection of E^{n+1} and the induced connection on M, respectively. The formulas of Gauss and Weingarten are given respectively by

\begin{align*}
\bar{\nabla}_X Y &= \nabla_X Y + h(X, Y), \\
\bar{\nabla}_X \xi &= -A_\xi X + D_X \xi
\end{align*}

for vector fields X, Y tangent to M and ξ normal to M, where h is the second fundamental form, D the normal connection, and A the shape operator of M. For each normal vector ξ at a point $p \in M$, the shape operator A_ξ is a self-adjoint operator of the tangent space $T_p M$ at p. The second fundamental form h and the shape operator A are related by

$$\langle A_\xi X, Y \rangle = \langle h(X, Y), \xi \rangle,$$

where $\langle \ , \ \rangle$ is the usual inner product in E^{n+1}. Let v be an E^{n+1}-valued smooth function on M, and let $\{e_1, e_2, \cdots, e_n\}$ be a local orthonormal frame field of M. We define

$$\Delta v = \sum_{i=1}^{n} (\bar{\nabla}_{e_i} \nabla_{e_i} v - \bar{\nabla}_{\nabla_{e_i} e_i} v).$$
It is well known that the position vector x and the mean curvature vector H of M in E^{n+1} satisfy

$$\Delta x = H. \quad (4)$$

Let e_{n+1} be a local unit normal vector to M. Since the mean curvature vector H is normal to M, we have $H = \langle H, e_{n+1} \rangle e_{n+1}$. The function $\langle H, e_{n+1} \rangle$ is called mean curvature function and it will be denoted by α.

3. 2-type surface in E^3 satisfying $\langle \Delta x, x - x_0 \rangle = \text{const.}$

Let M be a 2-type surface in E^3. Then its position vector x is expressed in the form

$$x = x_0 + x_1 + x_2,$$

where x_0 is a constant vector, and $x_i (i = 1, 2)$ are nonconstant vectors in E^3 such that $\Delta x_i = \lambda_i x_i$, $\lambda_i \in R$, $\lambda_1 \neq \lambda_2$. By (4) we have $\Delta x = H = \lambda_1 x_1 + \lambda_2 x_2$ and $\Delta^2 x = \Delta H = \lambda_1^2 x_1 + \lambda_2^2 x_2$. Thus

$$\Delta^2 x = (\lambda_1 + \lambda_2) \Delta x - \lambda_1 \lambda_2 (x - x_0). \quad (5)$$

The general basic formula of ΔH derived in [1] plays important role in the study of low type. In particular, if M is a surface in E^3, it reduces to

$$\Delta H = (\Delta \alpha - \alpha ||A_{e_3}||^2) e_3 - 2\alpha A_{e_3} (\text{grad} \alpha) - \alpha \text{grad} \alpha, \quad (6)$$

where α is the mean curvature function and e_3 a unit normal vector of M in E^3. By comparing the tangential part of both (5) and (6), we find

$$\lambda_1 \lambda_2 (x - x_0)^T = 2A_{e_3} (\text{grad} \alpha) + \alpha \text{grad} \alpha, \quad (7)$$

where $(x - x_0)^T$ means the tangential part of the vector $x - x_0$. Now suppose that

$$\langle \Delta x, x - x_0 \rangle = c \quad (8)$$
holds for a constant c. Let $\{e_1, e_2\}$ be a local orthonormal frame of M. Since

$$\Delta \langle \Delta x, x - x_0 \rangle = \sum_{i=1}^{2} e_i e_i \langle \Delta x, x - x_0 \rangle - \sum_{i=1}^{2} \nabla e_i e_i \langle \Delta x, x - x_0 \rangle$$

$$= \sum_{i=1}^{2} e_i \left(\langle \nabla e_i (\Delta x), x - x_0 \rangle + \langle \Delta x, e_i \rangle \right)$$

$$- \sum_{i=1}^{2} \left(\langle \nabla \nabla e_i e_i (\Delta x), x - x_0 \rangle + \langle \Delta x, \nabla e_i e_i \rangle \right)$$

$$= \sum_{i=1}^{2} \langle \nabla e_i (\Delta x), x - x_0 \rangle - \sum_{i=1}^{2} \langle \nabla \nabla e_i e_i (\Delta x), x - x_0 \rangle$$

$$- \sum_{i=1}^{2} \langle \nabla \nabla e_i e_i (\Delta x), x - x_0 \rangle$$

$$= \langle \Delta (\Delta x), x - x_0 \rangle + \sum_{i=1}^{2} \langle \nabla e_i (\Delta x), e_i \rangle$$

$$= \langle \Delta^2 x, x - x_0 \rangle + \sum_{i=1}^{2} \langle D e_i (\Delta x) - A_{\Delta x} e_i, e_i \rangle \ (\text{by (2)})$$

$$= \langle \Delta^2 x, x - x_0 \rangle - \sum_{i=1}^{2} \langle A_{\Delta x} e_i, e_i \rangle$$

$$= \langle \Delta^2 x, x - x_0 \rangle - \sum_{i=1}^{2} \langle \Delta x, h(e_i, e_i) \rangle \ (\text{by (3)})$$

$$= \langle \Delta^2 x, x - x_0 \rangle - \langle \Delta x, \Delta x \rangle,$$

(8) and $\Delta x = H = \alpha e_3$ imply

$$\langle \Delta^2 x, x - x_0 \rangle - \alpha^2 = 0. \quad (9)$$

From (5), (8) and (9), we get

$$(\lambda_1 + \lambda_2) c - \lambda_1 \lambda_2 \langle x - x_0, x - x_0 \rangle - \alpha^2 = 0.$$

Differentiating both sides of the above equation in the direction of a tangent vector X on M, we find

$$-2\lambda_1 \lambda_2 \langle x - x_0, X \rangle - 2\alpha X(\alpha) = 0$$

or

$$X(\alpha) = -\frac{\lambda_1 \lambda_2}{\alpha} \langle X, (x - x_0)^T \rangle.$$
This implies that
\[\text{grada} = -\frac{\lambda_1\lambda_2}{\alpha}(x - x_0)^T. \] (10)

Lemma 3.1. Let \(M \) be a 2-type surface in \(E^3 \) whose position vector \(x \) is expressed as \(x = x_0 + x_1 + x_2 \), where \(x_0 \) is a constant vector, and \(x_i (i = 1, 2) \) are nonconstant vectors in \(E^3 \) such that \(\Delta x_i = \lambda_i x_i, \lambda_i \in \mathbb{R}, \lambda_1 \neq \lambda_2 \). Assume that \(\langle \Delta x, x - x_0 \rangle = c \) holds for a constant \(c \). Then the mean curvature function \(\alpha \) of \(M \) is constant.

Proof. Suppose that \(\alpha \) is nonconstant. If \(M \) is of null 2-type, then \(M \) is a circular cylinder \([2]\), which implies that the mean curvature function \(\alpha \) is constant. So the assumption implies that \(M \) is not of null 2-type. Substituting (10) into (7) we get
\[A_{e_3}(x - x_0)^T = -\alpha(x - x_0)^T, \]
which implies that \(\text{grada} \) is a principal vector of the shape operator \(A_{e_3} \) and the corresponding principal curvature is \(-\alpha \). Since \(\alpha \) is the sum of two principal curvatures, the other principal curvature is \(2\alpha \). Let \(\{e_1, e_2\} \) be a local orthonormal frame of \(M \) such that \(e_1 \) is parallel to \(\text{grada} \). Note that \(e_2(\alpha) = 0 \). By the Coddazzi equations, we have
\[e_1(2\alpha) = (-\alpha - 2\alpha)\omega_{12}(e_2) = -3\alpha\omega_{12}(e_2), \] (11)
\[e_2(-\alpha) = (-\alpha - 2\alpha)\omega_{12}(e_1) = -3\alpha\omega_{12}(e_1), \] (12)
where \(\omega_{12} \) is the connection form of \(\{e_1, e_2\} \). Since \(\alpha \) is nonzero and \(e_2(\alpha) = 0 \), from (12) it follows that \(\omega_{12}(e_1) = 0 \). From (11) we have \(\omega_{12}(e_2) = \frac{2e_1(\alpha)}{3\alpha} \).

This and \(\omega_{12}(e_1) = 0 \) implies that
\[\omega_{12} = -\frac{2e_1(\alpha)}{3\alpha} \theta_2, \] (13)
where \(\{\theta_1, \theta_2\} \) denotes the dual 1-forms of \(\{e_1, e_2\} \). Since \(\text{grada} = e_1(\alpha)e_1 \), by (10) we find
\[\langle x - x_0, e_2 \rangle = 0. \]
Differentiating both sides of the above in the direction of \(e_2 \), we find
\[1 + \langle x - x_0, \nabla e_2 e_2 \rangle = 0. \] (14)

By (1) and \(h(e_2, e_2) = 2\alpha e_3 \) we have
\[\nabla e_2 e_2 = h(e_2, e_2) + \nabla e_2 e_2 = 2\alpha e_3 + \omega_{21}(e_2)e_1. \]
Substituting this into (14) and we find
\[1 + 2\langle x - x_0, \alpha e_3 \rangle + \omega_{21}(e_2)\langle x - x_0, e_1 \rangle = 0. \]
By using (8), (10), (13) and considering \(\text{grada} = e_1(\alpha)e_1 \) it follows that
\[1 + 2c - \frac{2(e_1(\alpha))^2}{3\lambda_1\lambda_2} = 0. \]
from the above equation. This implies that \(e_1(\alpha) \) is a constant. Since \(d\omega_{12} = -K\theta_1 \wedge \theta_2 \), where \(K \) is the Gauss curvature of \(M \), from (13) and the structural equation \(d\theta_2 = \omega_{21} \wedge \theta_1 \), we get

\[
-K\theta_1 \wedge \theta_2 = \frac{-2e_1(\alpha)}{3}(-\frac{e_1(\alpha)}{\alpha^2}\theta_1 \wedge \theta_2) - \frac{2e_1(\alpha)}{3\alpha}(-\frac{2e_1(\alpha)}{3\alpha}\theta_1 \wedge \theta_2)
\]

\[
= \frac{10e_1(\alpha)^2}{9\alpha^2}\theta_1 \wedge \theta_2.
\]

Since \(K = -2\alpha^2 \), from this we have \(18\alpha^4 = 10(e_1(\alpha))^2 \), which implies that \(\alpha \) is constant. This is a contradiction. □

Proposition 3.2. Let \(M \) be a 2-type surface in \(E^3 \) whose position vector \(x \) is expressed as \(x = x_0 + x_1 + x_2 \), where \(x_0 \) is a constant vector, and \(x_i (i = 1, 2) \) are nonconstant vectors in \(E^3 \) such that \(\Delta x_i = \lambda_i x_i, \lambda_i \in R, \lambda_1 \neq \lambda_2 \). Assume that \(\langle \Delta x, x - x_0 \rangle = c \) holds for a constant \(c \). Then \(M \) is of null 2-type, i.e., \(M \) is an open part of a circular cylinder.

Proof. By Lemma 3.1, the mean curvature function \(\alpha \) of \(M \) is constant. By (6) it implies that \(\Delta^2 x = \Delta H \) is normal to \(M \). From (5) it follows that \(\lambda_1 \lambda_2 (x - x_0) \) is normal to \(M \). If \(M \) is not of null 2-type, then the vector \(x - x_0 \) is normal to \(M \). This is impossible. Thus \(M \) is of null 2-type. Consequently \(M \) is an open part of a circular cylinder [2]. □

4. Quadric hypersurfaces satisfying \(\langle \Delta x, x \rangle = \text{const.} \)

Consider the set \(M \) of points \((x_1, \ldots, x_{n+1}) \) in the \((n + 1)\)-dimensional Euclidean space \(E^{n+1} \) satisfying the following equation of the second degree:

\[
\sum_{i,j=1}^{n+1} a_{ij}x_ix_j + \sum_{i=1}^{n+1} b_ix_i + d = 0,
\]

(15)

where \(a_{ij}, b_j, d \) are real numbers. The equation can be expressed as in the following form

\[
\langle Ax + b, x \rangle + d = 0,
\]

where \(\langle \ , \ \rangle \) is the usual inner product of \(E^{n+1} \), for the matrix \(A = (a_{ij}) \) and vectors \(x = \begin{bmatrix} x_1 \\ \vdots \\ x_{n+1} \end{bmatrix} \), \(b = \begin{bmatrix} b_1 \\ \vdots \\ b_{n+1} \end{bmatrix} \). We can assume without loss of generality that the matrix \(A = (a_{ij}) \) is symmetric and \(A \) is not a zero matrix. If the left side of the equation (15) is reducible polynomial, then \(M \) is a hyperplane or a union of two hyperplanes. In this paper we assume that the polynomial given by the left side of (15) is irreducible over real numbers. In general the whole set \(M \) does not form a submanifold of \(E^{n+1} \). Instead it can be shown that the subset

\[
M' = \{ x = \begin{bmatrix} x_1 \\ \vdots \\ x_{n+1} \end{bmatrix} \in M|2Ax + b \neq 0 \} \text{ is an } n\text{-dimensional submanifold}
\]
of E^{n+1} by using the implicit function theorem. In this paper, we mean the hypersurface M' by a quadric hypersurface M described by (15). We will study a quadric hypersurface M satisfying the condition $\langle \Delta x, x \rangle = c$ for a constant c, where x is the position vector of M and Δ its Laplacian. Note that the condition $\langle \Delta x, x \rangle = c$ for a constant c is invariant under an orthogonal transformation. So without loss of generality we may assume that the matrix A is diagonal with diagonal entries $\lambda_1, \cdots, \lambda_{n+1}$. So the equation (15) can be written as

$$\sum_{i=1}^{n+1} \lambda_i x_i^2 + \sum_{i=1}^{n+1} b_i x_i + d = 0, \quad (16)$$

or

$$\langle Ax + b, x \rangle + d = 0, \quad (17)$$

where A is the diagonal matrix $\text{diag}[\lambda_1, \cdots, \lambda_{n+1}]$. Note again that we only consider the case that the left side of (16) is irreducible. First of all we will investigate some basic properties of quadric hypersurface M and classify the minimal quadric hypersurfaces in an elementary way.

Lemma 4.1. The vector $2Ax + b$ is a nonzero normal vector to M.

Proof. Differentiating both sides of (17) in the direction of a tangent vector field X of M, we find

$$\langle AX, x \rangle + \langle Ax + b, X \rangle = 0$$

or

$$\langle 2Ax + b, X \rangle = 0.$$

This implies that $2Ax + b$ is normal to M. By assumption $2Ax + b$ is nonzero. \qed

Lemma 4.2. Let $\{e_1, \cdots, e_n\}$ be a local orthonormal frame of M. Then the following holds.

$$\sum_{i=1}^{n} \langle 2Ae_i, e_i \rangle + \langle Ax + b, \Delta x \rangle = 0. \quad (18)$$

Proof. Let $\{e_1, \cdots, e_n\}$ be a local orthonormal frame of M. By Lemma 4.1 we have

$$\langle 2Ax + b, e_i \rangle = 0$$

for $i = 1, 2, \cdots, n$. Differentiating the above equation in the direction of e_i we find

$$\langle 2Ae_i, e_i \rangle + \langle 2Ax + b, h(e_i, e_i) \rangle = 0,$$

where h is the second fundamental form of M. Since $\Delta x = \sum_{i=1}^{n} h(e_i, e_i)$, by summing up over i we get (18). \qed

It is already well-known that the only minimal quadric hypersurfaces are cones described in the following lemma. But we will prove it by using Lemma 4.2.
Lemma 4.3. If M is a minimal quadric hypersurface, then by a parallel translation and an orthogonal coordinate change, it can be described by

$$(l-1)\sum_{i=1}^{k} x_i^2 + (1-k) \sum_{i=k+1}^{k+l} x_i^2 = 0$$

for integers $k, l (k, l > 1, k + l \leq n + 1)$.

Proof. Let M be a minimal quadric hypersurfaces described by (16). Since the condition minimality is invariant under any parallel translation and orthogonal coordinate change, we may write the equation (16) as

$$s \sum_{i=1}^{s} \lambda_i x_i^2 + \sum_{i=s+1}^{s+t} b_i x_i + d = 0 \quad (\lambda_i \neq 0, \ i = 1, \cdots, s)$$

or

$$s \sum_{i=1}^{s} \lambda_i x_i^2 + \sum_{i=s+1}^{s+t} b_i x_i + d = 0.$$

($\lambda_i \neq 0, \ i = 1, \cdots, s, \ b_j \neq 0, \ j = s + 1, \cdots, s + t \leq n + 1$)

We will show that the second description is impossible. Suppose that M is described by the second equation. Let e_1, \cdots, e_n be a local orthonormal frame of M. Since $2Ax + b$ is a normal vector field of M. Thus e_1, \cdots, e_n and $\frac{2Ax + b}{|2Ax + b|}$ form a Euclidean orthonormal frame, where $|2Ax + b|$ means the magnitude of the vector $2Ax + b$. So we have

$$\sum_{i=1}^{n} \langle 2A e_i, e_i \rangle + \langle 2A \frac{2Ax + b}{|2Ax + b|}, \frac{2Ax + b}{|2Ax + b|} \rangle = \text{tr}(2A),$$

where $\text{tr}(2A)$ is the trace of the matrix $2A$. Since M is minimal, it follows from (18) and the above equation that

$$\langle 2A(2Ax + b), 2Ax + b \rangle = \text{tr}(2A) \langle 2Ax + b, 2Ax + b \rangle.$$ (19)

Since $b_{s+1} \neq 0$, M can be locally considered as a graph of the function $x_{s+1} = \frac{1}{b_{s+1}} (-d - \sum_{i=1}^{s} \lambda_i x_i^2 - \sum_{i=s+2}^{s+t} b_i x_i)$. The equation (19) can be written as

$$\sum_{i=1}^{s} 4\lambda_i^2 (\text{tr}(2A) - 2\lambda_i)x_i^2 + \sum_{i=s+1}^{s+t} b_i^2 = 0.$$

As x_1, \cdots, x_s are independent variables, from the above equation, we have $\lambda_i = \text{tr}(A), \ i = 1, \cdots, s$ and $\text{tr}(2A) \sum_{i=s+1}^{s+t} b_i^2 = 0$. From this we find $\lambda_i = 0, \ i = 1, \cdots, s$, which is a contradiction. Thus we know that $b = 0$, which implies $\langle Ax, x \rangle + d = 0$, or $\sum_{i=1}^{s} \lambda_i x_i^2 + d = 0$. The equation (19) can be simplified as

$$\langle A^2 x, Ax \rangle = \text{tr}(A) \langle Ax, Ax \rangle.$$ (20)
Without loss of generality we may consider M as a graph of the function $x_1 = \pm \frac{1}{\sqrt{d}} \sqrt{-d - \sum_{i=2}^{s} \lambda_i x_i^2}$. Substituting this into (20) we get

$$\sum_{i=2}^{s} \lambda_i (\lambda_i^2 - \operatorname{tr}(A) \lambda_i - \lambda_1^2 + \operatorname{tr}(A) \lambda_1) x_i^2 - \lambda_1 d(\lambda_1 - \operatorname{tr}(A)) = 0.$$

From this we have

$$\lambda_i^2 - \operatorname{tr}(A) \lambda_i - \lambda_1^2 + \operatorname{tr}(A) \lambda_1 = 0, \quad i = 2, \ldots, s, \quad \lambda_1 d(\lambda_1 - \operatorname{tr}(A)) = 0.$$

From the second equation, we have $d = 0$ or $\lambda_1 = \operatorname{tr}(A)$. If $\lambda_1 = \operatorname{tr}(A)$, then the first equation and the condition $\lambda_i \neq 0, i = 2, \ldots, s$ we find $\lambda_i = \operatorname{tr}(A), i = 1, \ldots, s$, which implies that $s = 1$ or M and thus $\lambda_1 x_1^2 + d$ is reducible. So we have $d = 0$. The first equation is factorized into

$$(\lambda_i - \lambda_1)(\lambda_i - (\operatorname{tr}(A) - \lambda_1)) = 0,$$

which implies that $\lambda_i = \lambda_1$ or $\lambda_i = \operatorname{tr}(A) - \lambda_1, i = 1, \ldots, s$. If all $\lambda_i = \lambda_1$, then $\lambda \sum_{i=1}^{s} x_i^2 = 0$ or $x_1 = \cdots = x_s = 0$, which is impossible. So without loss of generality, we may assume that $\lambda_1 = \cdots = \lambda_k$ and $\lambda_{k+1} = \cdots = \lambda_s$ for some positive integer $k, 1 \leq k < s$. Suppose that $k = 1$. Then, since $\operatorname{tr}(A) = \lambda_1 + (s-1)(\operatorname{tr}(A) - \lambda_1), (s-2)(\operatorname{tr}(A) - \lambda_1) = 0$. This implies that $s = 2$ or $\operatorname{tr}(A) - \lambda_1 = 0$. In any cases, the polynomial $\sum_{i=1}^{s} \lambda_i x_i^2$ is reducible. So we may assume that $1 < k < s-1$. Let $\lambda_1 = \lambda, \operatorname{tr}(A) - \lambda_1 = \mu$ and $s - k = l$. From $\operatorname{tr}(A) = k\lambda + l\mu$ and $\mu = \operatorname{tr}(A) - \lambda$, we have $\mu = \frac{k-1}{k+l}\lambda$. So given quadric hypersurface can be described as

$$\lambda \sum_{i=1}^{k} x_i^2 + \frac{1-k}{l-1} \lambda \sum_{i=k+1}^{k+l} x_i^2 = 0$$

or

$$(l-1) \sum_{i=1}^{k} x_i^2 + (1-k) \sum_{i=k+1}^{k+l} x_i^2 = 0$$

(21)

for some two positive integers $k, l > 1, k + l \leq n + 1$. Conversely, we can show that a quadric hypersurface described by (21) is a minimal hypersurface. Let M be a quadric hypersurface in E^{n+1} described by (21). The equation (21) can be written as $\langle A x, x \rangle = 0$, where A is an $(n+1) \times (n+1)$ diagonal matrix with diagonals $l-1, \ldots, l-1, l-1, \cdots, k, 0, \cdots, 0$. Let e_1, \ldots, e_n be a local orthonormal frame of M. Since $\frac{Ax}{|Ax|}$ is a unit normal vector to M, we have

$$\langle Ae_1, e_1 \rangle + \cdots + \langle Ae_n, e_n \rangle + \langle A \frac{Ax}{|Ax|}, \frac{Ax}{|Ax|} \rangle = \operatorname{tr}(A) = k(l-1) + l(1-k) = l - k.$$

(22)
By using (21) we have
\[
\langle A \frac{Ax}{|Ax|}, Ax \rangle = \frac{(l - 1)^3 \sum_{i=1}^{k} x_i^2 + (1 - k)^3 \sum_{i=k+1}^{k+l} x_i^2}{(l - 1)^2 \sum_{i=1}^{k} x_i^2 + (1 - k)^2 \sum_{i=k+1}^{k+l} x_i^2}
\]
\[
= \frac{(l - 1)^3 \sum_{i=1}^{k} x_i^2 + (1 - l)(1 - k)^2 \sum_{i=1}^{k} x_i^2}{(l - 1)^2 \sum_{i=1}^{k} x_i^2 + (1 - l)(1 - k) \sum_{i=1}^{k} x_i^2}
\]
\[
= l - k.
\]
So from (22) and the above equation we get
\[
\langle Ae_1, e_1 \rangle + \cdots + \langle Ae_n, e_n \rangle = 0. \tag{23}
\]
By similar computation in Lemma 4.2, we have
\[
\langle Ae_1, e_1 \rangle + \cdots + \langle Ae_n, e_n \rangle + \langle Ax, \Delta x \rangle = 0.
\]
This and (23) imply that \(\langle Ax, \Delta x \rangle = 0\). Subsequently we have \(\Delta x = 0\). So we can conclude that \(M\) is minimal. □

From now on we assume that \(M\) is a quadric hypersurface described by \(\langle Ax + b, x \rangle + d = 0\) for an \((n + 1) \times (n + 1)\) diagonal matrix \(A\) with diagonal entries \(\lambda_1, \ldots, \lambda_{n+1}\) and a constant vector \(b = \begin{bmatrix} b_1 \\ \vdots \\ b_{n+1} \end{bmatrix}\) in \(E^{n+1}\) and satisfies \(\langle \Delta x, x \rangle = c\) for a constant \(c\).

Lemma 4.4. Assume that \(c \neq 0\). Then the following holds.

\[
\text{tr}(2A)\langle 2Ax + b, 2Ax + b \rangle \langle 2Ax + b, x \rangle - \langle 2A(2Ax + b), 2Ax + b \rangle \langle 2Ax + b, x \rangle \\
+ c(2Ax + b, 2Ax + b)^2 = 0.
\]

Proof. Let \(\{e_1, \ldots, e_n\}\) be a local orthonormal frame of \(M\). Then by Lemma 4.2 the following holds.
\[
\sum_{i=1}^{n} \langle 2Ae_i, e_i \rangle + \langle 2Ax + b, \Delta x \rangle = 0. \tag{24}
\]

Also we have
\[
\sum_{i=1}^{n} \langle 2Ae_i, e_i \rangle + \langle 2A \frac{2Ax + b}{|2Ax + b|}, \frac{2Ax + b}{|2Ax + b|} \rangle = \text{tr}(2A). \tag{25}
\]
Since both \(2Ax + b\) and \(\Delta x\) are normal to \(M\), there exists a scalar function \(f(x)\) defined on \(M\) such that \(\Delta x = f(x)(2Ax + b)\). This and (24) imply that \(\sum_{i=1}^{n} \langle 2Ae_i, e_i \rangle = -f(x)(2Ax + b, 2Ax + b)\). Substituting this into (25), we have
\[
\text{tr}(2A) - \frac{\langle 2A(2Ax + b), 2Ax + b \rangle}{(2Ax + b, 2Ax + b)} + f(x)(2Ax + b, 2Ax + b) = 0.
\]
From this and \(\langle \Delta x, x \rangle = f(x)\langle 2Ax + b, x \rangle = c \), it follows that
\[
\text{tr}(2A) - \frac{\langle 2A(2Ax + b), 2Ax + b \rangle}{\langle 2Ax + b, 2Ax + b \rangle} + \frac{c}{\langle 2Ax + b, x \rangle} \langle 2Ax + b, 2Ax + b \rangle = 0
\]
or
\[
\text{tr}(2A)\langle 2Ax + b, 2Ax + b \rangle\langle 2Ax + b, x \rangle - \langle 2A(2Ax + b), 2Ax + b \rangle\langle 2Ax + b, x \rangle + c\langle 2Ax + b, 2Ax + b \rangle^2 = 0.
\]
\(\square \)

We proceed two cases separately.

Case 1. \(\langle \Delta x, x \rangle = 0 \)

If \(\Delta x = 0 \), then \(M \) is a minimal hypersurface. Assume that \(M \) is nonminimal, that is, \(\Delta x \neq 0 \). As both of \(\Delta x \) and \(2Ax + b \) are normal to \(M \), there exists a nonzero scalar function \(f(x) \) defined on \(M \) such that \(\Delta x = f(x)(2Ax + b) \).

From \(0 = \langle \Delta x, x \rangle = f(x)\langle 2Ax + b, x \rangle \), we get \(\langle 2Ax + b, x \rangle = 0 \) . From this and \(\langle Ax + b, x \rangle + d = 0 \), we have \(\langle Ax, x \rangle = d \). We can deduce that \(Ax \) is a normal vector field of \(Ax + b \). Since \(2Ax + b \) is also normal, we can see that if \(b \) is non-zero vector, then \(b \) is a constant normal vector of \(M \). As \(M \) is not a hyperplane, it is impossible. So we can say that \(b = 0 \) and consequently \(\langle Ax, x \rangle = 0 \). Therefore we can conclude that a quadric hypersurface satisfies \(\Delta x = 0 \), then \(M \) is a minimal quadric hypersurface described in Lemma 4.3 or a nonminimal quadric hypersurface described by \(\langle Ax, x \rangle = 0 \) for a diagonal matrix \(A \).

Case 2. \(\langle \Delta x, x \rangle = c \neq 0 \)

First we will show that if \(\lambda_i = 0 \), then \(b_i = 0 \) for \(i \in \{1, \cdots, n + 1\} \). Suppose that \(\lambda_1 = 0 \) and \(b_1 \neq 0 \). Then \(M \) can be locally considered a graph of function \(x_1 = \frac{1}{b_1}(-d - \sum_{i=2}^{n+1} \lambda_i x_i^2 - \sum_{i=2}^{n+1} b_i x_i) \), since \(\langle Ax + b, x \rangle = d \). Lemma 4.2 and \(\langle Ax + b, x \rangle + d = 0 \) imply that
\[
\text{tr}(2A)\langle 2Ax + b, 2Ax + b \rangle \langle Ax, x \rangle - \langle 2A(2Ax + b), 2Ax + b \rangle \langle Ax, x \rangle - \langle 2A(2Ax + b), 2Ax + b \rangle \langle Ax, x \rangle - \langle 2A(2Ax + b), 2Ax + b \rangle \langle Ax, x \rangle \\
+c(\langle 2Ax + b, 2Ax + b \rangle)^2 = 0.
\]

We can observe the left side of (26) is a polynomial of \(x_2, \cdots, x_{n+1} \), which are independent variables. So it must be identically zero. If we consider the coefficients of the term \(x_i^4, i = 2, \cdots, n + 1 \) of this polynomial, we find
\[
4\text{tr}(2A)\lambda_i^3 - 8\lambda_i^4 + 16c\lambda_i^4 = 0, \; i = 2, \cdots, n + 1.
\]
This implies that
\[
\lambda_i = 0 \text{ or } (2 - 4c)\lambda_i = \text{tr}(2A), \; i = 2, \cdots, n + 1. \tag{27}
\]
Now consider the coefficients of \(x_i^2 x_j^2 (2 \leq i, j \leq n + 1, i \neq j) \). Then we find
\[
4\text{tr}(2A)(\lambda^2 \lambda_j + \lambda^2 \lambda_i) - 8(\lambda_i^3 \lambda_j + \lambda_j^3 \lambda_i) + 32c\lambda_i^2 \lambda_j^2 = 0. \tag{28}
\]
If \(2 - 4c = 0\), then from (27) we find \(\text{tr}(2A) = 0\). This and (28) imply that all \(\lambda_i\) are equally zero. It’s a contradiction. So we can see that \(2 - 4c \neq 0\). Consequently from (27) we may assume that
\[
\lambda_i = \lambda \neq 0, \ i = 2, \cdots, k
\]
and
\[
\lambda_i = 0, \ i = k + 1, \cdots, n + 1.
\]
So the equation (26) can be written as
\[
\text{tr}(2A)(4\lambda^2 \sum_{i=2}^{k} x_i^2 + 4\lambda \sum_{i=2}^{k} b_i x_i + \sum_{i=1}^{n+1} b_i^2)(\lambda \sum_{i=2}^{k} x_i^2 - d) = 0
\]
\[
(4\lambda^2 \sum_{i=2}^{k} x_i^2 + 8\lambda^2 \sum_{i=2}^{k} b_i x_i + 2\lambda \sum_{i=2}^{k} b_i^2)(\lambda \sum_{i=2}^{k} x_i^2 - d) + c(4\lambda^2 \sum_{i=2}^{k} x_i^2 + 4\lambda \sum_{i=2}^{k} b_i x_i + \sum_{i=1}^{n+1} b_i^2)^2 = 0. \tag{29}
\]

If we consider the coefficient of the term \(x_2 x_i\) \((i = 3, \cdots, k)\) of the left side of (29), it is equal to \(32c\lambda b_2 b_i\), which must be zero. Suppose that \(b_2 \neq 0\). It follows that \(b_i = 0, \ i = 3, \cdots, k\). So the coefficients of the terms \(x_3^2\) and \(x_2^2\) are equals to
\[
-4d\lambda^2 \text{tr}(2A) + \text{tr}(2A)\lambda(\sum_{i=1}^{n+1} b_i^2) + 8d\lambda^3 - 2\lambda^2 b_2^2 + 8c\lambda^2(\sum_{i=1}^{n+1} b_i^2)
\]
and
\[
-4d\lambda^2 \text{tr}(2A) + \text{tr}(2A)\lambda(\sum_{i=1}^{n+1} b_i^2) + 8d\lambda^3 - 2\lambda^2 b_2^2 + 8c\lambda^2(\sum_{i=1}^{n+1} b_i^2) + 16\lambda^2 c b_2^2,
\]
respectively. Since both of them are equal to zero, we get \(b_2 = 0\), which is a contradiction. So we can say that \(b_i = 0, \ i = 2, \cdots, k\). The equation (26) can be rewritten as
\[
\text{tr}(2A)(4\lambda^2 \sum_{i=2}^{k} x_i^2 + b_i^2 + \sum_{i=k+1}^{n+1} b_i^2)(\lambda \sum_{i=2}^{k} x_i^2 - d) = 0
\]
\[
-8\lambda^3(\sum_{i=2}^{k} x_i^2)(\lambda \sum_{i=2}^{k} x_i^2 - d) + c(4\lambda^2 \sum_{i=2}^{k} x_i^2 + b_i^2 + \sum_{i=k+1}^{n+1} b_i^2)^2 = 0. \tag{30}
\]
Then the coefficients of \((\sum_{i=2}^{k} x_i^2)^2, \ \sum_{i=2}^{k} x_i^2\) and the constant term of the left side of (30) are equal to
\[
4\lambda^3(\text{tr}(2A) - 2\lambda + 4c\lambda),
\]
\[
\text{tr}(2A)(-4d\lambda^2 + (b_1^2 + \sum_{i=k+1}^{n+1} b_i^2)\lambda) + 8d\lambda^3 + 8c(b_1^2 + \sum_{i=k+1}^{n+1} b_i^2)\lambda^2
\]
and

\[-\text{tr}(2A) d(b_1^2 + \sum_{i=k+1}^{n+1} b_i^2) + c(b_1^2 + \sum_{i=k+1}^{n+1} b_i^2)^2,\]

respectively. They must be equal to zero. Substituting $\text{tr}(2A) = 2(k-1)\lambda$ into the above coefficients, we have

\[k - 1 = 1 - 2c,\]

\[(k - 1)(-4d\lambda + b_1^2 + \sum_{i=k+1}^{n+1} b_i^2) + 4d\lambda + 4c(b_1^2 + \sum_{i=k+1}^{n+1} b_i^2) = 0\]

and

\[-2(k-1)d\lambda(b_1^2 + \sum_{i=k+1}^{n+1} b_i^2) + c(b_1^2 + \sum_{i=k+1}^{n+1} b_i^2)^2 = 0.\]

Substituting the first equation into the second one and the third one, we find

\[(b_1^2 + \sum_{i=k+1}^{n+1} b_i^2) + 8cd\lambda + 2c(b_1^2 + \sum_{i=k+1}^{n+1} b_i^2) = 0\]

and

\[-2d\lambda + 4cd\lambda + c(b_1^2 + \sum_{i=k+1}^{n+1} b_i^2) = 0.\]

Multiplying the number 2 at both sides of the second equation and subtracting it from the first equation, we get $4d\lambda = -(b_1^2 + \sum_{i=k+1}^{n+1} b_i^2)$. Substituting this into the first equation, we find $b_1^2 + \sum_{i=k+1}^{n+1} b_i^2 = 0$, which is a contradiction. So we may assume that $\lambda_i = 0$ implies that $b_i = 0$, $i = 1, \ldots, n+1$. Thus $(Ax + b, x) + d = 0$ can be written as $\sum_{i=1}^{k} \lambda_i x_i^2 + \sum_{i=1}^{k} b_i x_i + d = 0$ or $\sum_{i=1}^{k} \lambda_i(x_i + \frac{b_i}{2\lambda_i})^2 = e$ for a constant e and the equation (26) can be given as

\[
\text{tr}(2A)\{4 \sum_{i=1}^{k} \lambda_i^2(x_i + \frac{b_i}{2\lambda_i})^2(\sum_{i=1}^{k} \lambda_i x_i^2 - d) - (8(\sum_{i=1}^{k} \lambda_i^3(x_i + \frac{b_i}{2\lambda_i})^2)(\sum_{i=1}^{k} \lambda_i x_i^2 - d)

+ c(4 \sum_{i=1}^{k} \lambda_i^2(x_i + \frac{b_i}{2\lambda_i})^2\} = 0
\]

or

\[
(\sum_{i=1}^{k} \lambda_i^2(\text{tr}(2A)-2\lambda_i)(x_i + \frac{b_i}{2\lambda_i})^2)(\sum_{i=1}^{k} \lambda_i x_i^2 - d)+4c(\sum_{i=1}^{k} \lambda_i^2(x_i + \frac{b_i}{2\lambda_i})^2)^2 = 0. \tag{31}
\]

Suppose $b_1 \neq 0$. Locally we may consider M as the graph of the function $x_1 = \pm \sqrt{\frac{1}{\lambda_1}(e - \sum_{i=2}^{k} \lambda_i(x_i + \frac{b_i}{2\lambda_i})^2 - \frac{b_1}{2\lambda_1})}$. Substituting this function into (31)
we find
\[g(x_2, \ldots, x_k)(e - d + \frac{b_i^2}{4\lambda_i} - \sum_{i=2}^{k} \frac{b_i^2}{4\lambda_i} - \sum_{i=2}^{k} b_i x_i) \pm b_i \sqrt{\frac{1}{\lambda_1} (e - \sum_{i=2}^{k} \lambda_i (x_i + \frac{b_i}{2\lambda_i})^2) + 4ch(x_2, \ldots, x_k)^2 = 0,} \]
where
\[g(x_2, \ldots, x_k) = \sum_{i=2}^{k} \lambda_i^2 (\text{tr}(2A) - 2\lambda_i) (x_i + \frac{b_i}{2\lambda_i})^2 + \lambda_1 (\text{tr}(2A) - 2\lambda_1) (e - \sum_{i=2}^{k} \lambda_i (x_i + \frac{b_i}{2\lambda_i})^2) \]
and
\[h(x_2, \ldots, x_k) = \sum_{i=2}^{k} \lambda_i^2 (x_i + \frac{b_i}{2\lambda_i})^2 + \lambda_1 (e - \sum_{i=2}^{k} \lambda_i (x_i + \frac{b_i}{2\lambda_i})^2). \]
If \(g(x_2, \ldots, x_k) \) is not identically zero, then a rational function is equal to a irrational function because of (32). So we have \(h(x_2, \ldots, x_k) = 0 \), which implies that \(\lambda_i = \lambda_1, \ i = 2, \ldots, k \) and \(e = 0 \). This implies that \(\sum_{i=1}^{k} \lambda_i (x_i + \frac{b_i}{2\lambda_i})^2 = e = 0 \) or \(\lambda_1 \sum_{i=1}^{k} (x_i + \frac{b_i}{2\lambda_i})^2 = 0 \). It is a contradiction. So we may conclude that \(b_i = 0, \ i = 1, \ldots, k \). Thus equation (26) can be written as
\[-\text{tr}(2A)\langle 2Ax, 2Ax \rangle (2d) + \langle (2A)^2x, 2Ax \rangle (2d) + c\langle 2Ax, 2Ax \rangle^2 = 0 \]
or
\[-\text{tr}(A)\langle Ax, Ax \rangle d + \langle A^2x, Ax \rangle d + c\langle Ax, Ax \rangle^2 = 0. \]
By this and similar arguments we have \(\lambda_i = \lambda_1, \ i = 2, \ldots, k \). This implies that if \(k = n + 1 \), then \(M \) is a hypersphere and if \(k < n + 1 \), then \(M \) is a spherical cylinder. Combining results in Case 1 and Case 2, we have the following proposition.

Proposition 4.5. If a quadric hypersurface \(M \) described by (16) in \(E^{n+1} \) satisfies \(\langle \Delta x, x \rangle = c \) for a constant \(c \), then it is one of the followings:

1. a minimal quadric hypersurface.
2. a nonminimal quadric hypersurface described by \(\langle Ax, x \rangle = 0 \) for a diagonal matrix \(A \).
3. a hypersphere.
4. a spherical cylinder.

References

Changrim Jang
Dept. of Mathematics, College of Natural Science
University of Ulsan 44610, Ulsan, Korea
E-mail address: crjang@mail.ulsan.ac.kr

Haerae Jo
Ulsan Joongang High School 44434, Ulsan, Korea
E-mail address: haerae@hanmail.net