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ABSTRACT

Various kinds of predictive control design methods such

as MAC(Model Algorithmic Control), DMC(Dynamic Matrix

control), EHAC(Extended Horizon Adaptive Control),
GPC(Generalized Predictive Control), RHTC (Receding
Horizon Tracking Controller), and PVYC(PreView

Controller) are surveyed and compared in this paper.
In addition, stability properties of these control laws
date sumarized and some new stability

known to are

results are presented.
1. Introduction
Currently, several similar computer control techniques

strategy have been
to

"Predictive"
their

based on a socalled

introduced and successful applications

industrial multivariable processes have been reported
[9,12,36,49]. The main idea of the strategy is to

predict the effect of potential control actions on the

future values of the process output and to find the
best control actions which minimize the deviation of
the predicted outputs from the desired outputs. The

prediction horizon extends over the significant part of
the process response to the current control signal.
Generally, the horizon covers the deadtime part and the
This idea enables the

typical

nonminimum phase response part.
pfedictive control to be well suited to
processes where there may be variable dead time and
nonminimun phase responses.

that the

finite future values of the desired trajectory is known

It is assumed in the predictive control

a priori. This information about the future trajectory
may provide the feedforward control action which is
believed to be useful to the improvement of the
transient response.

Various predictive control laws and the used models
known to date are listed below:

1) Model Algorithmic Control (MAC)
; Impulse response model [1,2,3,6,9,10]

(2) Dynamic Matrix Control (DMC)
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; Step response model (11,13,14}

(3) Extended Horizon Adaptive Control (EHAC)
; ARMAX model {18,19,21]

(4) Generslized Predictive Control (GPC)
; CARIMA model [23,24,25,26}

(5) Receding Horizon Tracking Controller (RHTC)
; State space model [27,31]

(6) PreView controller (PVYC)
; State space model [33]

(7) Extended Horizon Self Adaptive Control (EHSAC)
; CARIMA model [38,39,40,41,42)

(8) Predictive Control Algorithm (PCA)

; Impulse response model [(45,46,47,48]
MUltiStep Multivariable
(MUSMAR)

; ARMAX model [43,44]

(9) Adaptive  Regulator

The sbove algorithms may have some common properties
but

they have different properties as well due to the

due to their use of the same predictive strategy,

different forms of the underlying mcdels, quadratic
costs, and basic assumptions.
In this paper, we focus our attention on the control

law, and so the identification feature which some of
predictive control laws possess will not be considered.

(6)

We exclude (7) and (8) since they can

Predictive Control laws (1)

are outlined and
compared here.
be easily cast into the framework of the other

such as GPC and MAC,

control
lews and exclude (9) since it
takes the form of the implicit self tuning controller
which makes difficult.

comparisons are made in [46,48,50) but they focus

direct comparisons Some

on
the predictive control laws based on the weighting
sequence models such as MAC, DMC, and PCA.

that our survey is not exhausted.
papers are listed and there may be

We believe

Only the receat
some papers left

uncited.
It should be noted that the of
the predictive control have not yet fully investigated.

This

stability pfoperties

is partly because most of the predictive control

laws assume the input/output models which have



difficulty
control system.
[27)
model as the underlying plant model.
that the

in studying the internal properties of the
in RHTC

since .RHTC takes a state space

The stability results proven
are instructive
Hence we propose
stability properties for the predictive
control laws be studied in the state
3,

present some new stability results for the

space framework.

In section we will show how this is possible and
predictive

contrel laws based on the input/output models.

2. Controller design strategy

The strategy for predictive control laws can be
summarized as follows:

1) it is assumed that the finite future values of the

desired trajectory are available at each instant of

time, which is an acceptible assumption in many
practical control problems.
2) at the present moment t, the future outputs of the
plant are predicted based on the given input and output
data.

3) the control vector is computed to minimize the given
performance index. In most cases, this control vector

minimizes the deviations of the predicted output from
the desired trajectory.
4) the first control signal u(t) is actually applied to

the plant and the whole procedure is repeated.

Predictive control laws using this strategy,
differ
plant model, <2> the form of the future trajectoty, <3>
the form of the

however,

from each other depending on <1> the assumed

cost function, <4> constraints on
contrel input <5> prediction equation of the plant
output. We outline the predictive control laws
centered around these points. In addition to this, we

present the related research results and compare with
each other.

MODEL ALGORITHMIC CONTROL (MAC)

<1> MAC assumes an impulse response model as the
undering plant model.

yM(t) = jil hju(t-j) (1)
In practice, however, an open loop stable system is
assumed in which case the FIR type model is given.

Nm

yylt) = jjl hju(t-j) (2)
When a state space model is given, a control law is
obtained after it is transformed into an impulse
response model [4,5].
<2> In most cases, a simple Tfirst order exponential

trajectory is used as the reference trajectory which is
peculiar to MAC:

K K
yr(t+k) =a vy (t] + (l-a)C
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k=1,2, . el <1
yp(t) = yit) (3)
where C is a set point and y(t) is an actual plant

output.

<¢3> The cost function is given as
T

~ 2
3= I (yplera) -y, (erkD) (4)
where Yp(t+k) is a predicted output.
<4> If the input is assumed to be free of constraints
(T=1), the cost functon (4) becomes
2
J = (yp(t+l) - yr(t+l)) (5)

Little and Edgar [8) solve the linear quadratic control
problem with linear inequality constraints.

<{5> Since one step ahead prediction is of the form
n

L
j=1

yp(t+l) hjuaf+l—j) + (y(t)—yM(t))

m
u(t) + jgzhju(t+l—)) + {yle)-yy(t)) (6)

[]

a control input mimimizing the cost function (5) is:

Oy
ult) = y (t+l) - (y(c)—yM(t)); jﬁé hju(t+l—])
‘m
= (l—a)(C—y(t))+yM(t)- jié hju(t+l -3y (7
Though MAC reports some successful applications to

real plants [9,49], it is shown to be inferior to other
weighting-sequence-model based predictive control laws

such as DMC and PCA {48]. Rouhani and Mehra [3,7] show
that the the control law (7) is unstable for nonminimum
phase systems and that some curious method should be
stability which is seen to bo

used for maintaining

unrealistic.

Dynamic MATRIX CONTROL (DMC)

<1> DMC assumes a step response model as the underlying

plant model.

yit) = I s.ault-i) (8)
w1 3
Unlike the impulse response sequence {(h;}, {s;} does
not converge to zero for large i, but the open loop
stability assumption gives 3j=5nm for 3 >ngp- A step

response sequence {S;} is simply related to {h;} by

K

Sg = iil hy +» k=1,2, (9)
and

hy = Sg - Sg | (10)
(2> There is no assumption given a priori for the
future trajectory.
(3> The cost function is given as

T 2

J = kil (y(trk) -y (e+k)) (11)
<4> In DMC, however, future increments in control
au{t+k) are taken to be zero for k2pu . In other
words, the strategy is to say that pu future control
actions are allowed to be freely chosen, after which
the control signals will be held constant. With a



nonminimum phase plant, for example,
future control grows in amplitude, but the
inhibits such growth from occcuring [48].
addition,
the control law.
[23,24) end EPSAC [38,39].

<5> The prediction equation is given by

Sal + ¥

= (12)
where
Y= [y(t+l), y(t+2), . y(t+T)]” (13)
ay = (au(t), au(t+l), ... , au{t+pu-1)1"  (14)
T = [§(t+l), Fe+2), .yl 7 (15)
Sl Q
S =
S, S,
.. (16)
5
S
T T-pu+l

y(t+k) is the prediction of the process output when

there is no future control action taken, giving

-1
yi{t+k) = j=20 st+k-jA“(j) (17)
Utilizing the above results, the performance index

(11) can be written as

I=0Y -9 )" (Y -y )
where

¥Yr = [y (t+l), v (t+2), ..., y (t+T)] (18)
The resulting control lsw is {11] :

PO et

8B = {57S) TsT(Y, - T) (19)
where only the first element of a0 is  actually
implemented. It should be noticed, however, that when
S matrix is nearly singular, the computation of the
solution is ill-conditioned. To deal with this problem
move suppression factor f is incorporated

[14,15,16,17],

diagonal elements of S°S matrix such that

which adds a positive constant f to the

“ap = (87s + D Is7(y, - D) (20

Equation (20) can be obtained as well from minimizing

the following performance index:

J (Y - ¥ ) (Y - ¥.) + £aU7a0 (21)
which hes the effects to suppress the variations of the

control effort. A different way of handling the

ill-conditioned matrix problem is approached by
principal components analysis [17]

Cutler [52] has stated that a stability analysis
not required for DMC because it is so robust.

this

is
However,
statement is not always the case. For example,
when pu=T,
the solution corresponds to pure model following which

can be unstable [48]. As it is, the stability of DMC
depends on the tuning parameters T, pu, and f. Maurath

all future controls are free to move, and

the unconstrained
strategy
This idea, in
renders the reduction in the computation of

This strategy is used as well in GPC
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et al. [14]

complex function of these parameters.

show that the stability property is a

EXTENDED HORIZON ADAPTIVE CONTROL (EHAC)

<1> BHAC assumes an ARMAX model as the underlying plant

model.

ata byt = sta™huce) + elt) " (22)
whereA(q‘l)andB(q‘Hare polynomials in the backward
shift operator q’%

atg™h =1+ a7t L ag™ (23)

’B(q'l) = by + blq‘l o+ bmq‘m (n>m) (24)
e{(t) represent errors made in the modelling and
disturbances acting on the process and assumed to be a

constant e.

<2> There is no assumption given a priori for the
future trajectory.
<3> The cost function is given as
T-1 5
J = I ul(t+k) (25a)
k=0
with the following constraint
y{t+T) = yrrt+T) (25b)

Deadbeat controllers set the d-step ahead predicton

equal to the desired value where d is the system dead
time. The above cost function, however, allows the
process longer time to reach this objective when T>d

with minimum efforts.
<4> The input is asgumed to be free of constraints.

<5> The prediction equation can be written as

P+ =6 (g Dy (0)+F (g H1B(a™ D lerr-1)+F(1)a
{26)

where p(q'l)and G(q‘l)are polynomials of order T-1 and
n~1 that satisfy a Diophantine equation:

1= righagh + g Teg ) (27)
If we represent r(q-1)B(g~hand G(q-Llin (26) by
-1 -1 -1 T+m-1
F(q ")Blgq ™) = Bo + qu e ¥ By 4
(28)
-1 -1 -n+l
Glg ") = ay A0 ST ST (29)
the resulting control law is given by [19]
1 2 -1 -
u(t) = Bo(Jéb Bj ) (Yr(t+T) - y(t+T)) (30)
where
= n-1 m
t+T) = . -3 . t-j- 31
y J£0 u]y(t iy o+ j£=0 BT+] u(t-3-1) (31)
This result is extended to multivariable control

systems in [18,53].
A similar result is developed using state space models
by Goodwin and Dugard [53] and using ARMAX models by
Dugard et al. [21]

But these control

for multivariable stochastic

system. laws are periodic with

period T, and T successive control laws have to be

cyclically applied, which distinguishes these control



laws from EHAC. Scattolini and Clarke [22] extend the
results using CARIMA model for offset rejection. The

BIBQ stability of the non-adaptive extended horizon
[19].

section 4 2 new stability result for the non—adaptive

controller is proven in We will present in

extended horizon controller using the state space

approach.

GENERALIZED PREDICTIVE CONTROL (GPC)

¢1> GPC assumes a CARIMA(Controlled Autoregressive

Integrated Moving Average) model as the underlying
plant model.
-1 _ -1 -1
A(gq T)ay(t) = Blg Tau(t-lL)+c{q ") E&(t) (32)

where A(q—l)and B(q-l)is same as defined in (23) and
(24), ¢ (t)is an uncorrelated random sequence, and 4 is
the differencing operatorl-q—{
¢2> There is no assumption given a priori for the
future trajectory.

<3> The cost function is given as

T T 2
(0, m=e (B0 [yterk)oy (640 1% £ rlsuterk-1)1°)

(33)
If the deadtime of the plant is known a priori, then D
can be chosen as the deadtime or more but generally it
is taken as 1.

<4> GPC uses the same idea as DMC [1l] that after an

interval pu <T control increments are assumed to be
zero, i.e. Au{t + k - 1) = 0 for k> pu.
<5> The prediction equation is obtained using a
Diophantine equation as
- -1 -1 -1 3

y(t+k)—Fk(q }B(q )Au(t+k—l)+Gk(q Jy(t)y (34)
where Fk(q‘%and Gk(q'ﬁsatisfy

1= ftahag harg™ 6 (a™h (35)
Since the controls are to be determined regardless of

the future noise sequence, {f!t+k)} is ignored in the

prediction equation. The prediction equation can be

written in the vector form (12) [24]
Y = Fau + ¥ (36)
where
80 0
F o=
81 B
: 8¢ (37
Bp_y 8p_2-- Brpu
g(t+k) is the component of y(t+k) composed of signals

which are known at time t, for example:
- -1 -1 -1
y(t+l) = [Fy(q ")Blq )—BOJ sule)+Gy (q T)y(e)
Fler2)=[F (g T1B(q™L)-8 g -8 lautt)+a, (q v (e

etc.

Now, the cost function (33) with D=1 is written as
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J(L,T)=(Fau+¥-y ) (FAU+T-¥_ ) +ran”ay (38)
and the minimization of J(1,T) gives

Ay = (F'F + rI)_lF'(Yr—Y) (39)
which is the same form as (20). Hence GPC can be

thought as the generalization of DMC to more general
systems represented by (32).
From the form of the control law, we can see that GPC

and DMC give zero offset provided that the vector ¥
involves a unit steady state gain in the feedback path.
Clarke et al. [25] attempts to prove the stability of
GPC for various settings of pu,D,T, and r.

the

They prove

stability properties in the framework of the state

space model. The following table lists the settings
for which the stability properties are praved.
Table 1. Special cases of GPC settings
pu D T r Results
1 1 - > 0 Thm. 2 of [25]
T-nl+l 1 - = 0 Thm. 1 of [25]
nl nl { > 2nl-1 0 Thm. 3 of [25}
nl : order of the state space model

We will investigate the stability properties for more

general settings of pu,D,T, and r later in this paper.
RECEDING HORIZON TRACKING CONTROLLER (RHTC)

<1> RHTC assumes a state space model as the underlying
plant model.
x(t+l) =

Ax(t) + Bu(t) (40a)

y{t) = cx(t)
where x(t)eR u(t)er™ and y(t)erP.

(40b)

<2> There is no assumption given a priori for the

future trajectory.

<3> The cost function is given as
1
J=% I ((y(t+k)-yr(t+k))’Q(y(t+K)-yr(t+k))
(k) TRUCEHR) P4 (Y (£+T) -y (£+T))
F(y(t+T)—yr(t+T))
where Q and F are pxp real positive matrices,

(41)
and R is
an nxn real positive matrix.
<4> The input is assumed to be free of constraints.

<6> It should be noted that explicit prediction

equations are not used in the minimization of the cost

function (41).

Following the standard optimization procedures, the

control giving minimum cost is given by

1

u(t)=—(R+B'K(T-1)B} "B' [K(T-1)Ax( g)+g(t+1)]

(42}

where K(T-1) is obtained from the following Riccati
equation

K<t+l)=A'K(t)A-A'K(t)B[R+B'K(t)BJ—‘B'K(t)A+c'Qc

K(0)=c'Fc (43)
and g(t+1) from the following equation
T
g(t+l)==0¢'(T,l)c'Fy_{(t+T)~ :L ' (i, 1)c'Qy _(r+i)
r iEL Tlaa



. ALlk

ok kgl =B(k-1}A,(k-2} -

o) (45)
Ac(k)={I-B(R+B'K(T-k-1)B)‘lB'K(T-k-l)]A (46)

Similar receding horizon regulation problems are found

in [28,30,32] for continuous time systems and in [29]
for discrete time systems. As we can see in (42), the
state space formulation gives a fixed gain state

feedback control law unlike a finite horizon 1Q problem
where a time varying feedback gain is given.
If the states are not directly accessible

a state

reconstruction scheme should be used. If a deadbeat

observer [54] is used as the state reconstruction

scheme, the stste x(t) can be calculated from the
finite input/output data, in which case the control law
(42) is almost the same form as the other predictive
control laws based on input/output models.

The state space approach can be thought to be a more
general form compared to input/output model based

predictive control laws and gives some advantages in

studying the internal properties of the closed loop
systems.
It is shown in [27] that the control law (42)
which the closed loop system
stable.
infinite weight is put on a terminal matrix F, which is
the Yr(t+T) , the

closed loop system is shown to be asymptotically stable

has a

finite horizon T over
if a

becomes asymptotically Particularly,

equivalent to constraint y(t+T)

for T>n

the

These stability results can give insights

into stsbility proof of the other predictive
Mohta and Clerke [23] uses the
horizon regulation problem [29] for the stability proof

of GPC.

control laws. receding

PREVIEW CONTROLLER (PVC)

(1> PVC assumes a stochastic state space model as the
underlying plant model.
x(t+l) = Ax(t) + Bul{t) + wit) (47a)
ylt) = cx(t) + v(t) (47b)
where
Xg » w(t), and v(t) are independent,
X, is Gaussian with E[xoj = 20
and B[ (x,-%y}(x9-Kg) "} = X
w(t) 1is white with N(0,W.), and
vit)

is white with N(O,Vt)(vt>0)
<2> A sequence of reference signals yr(t) is modeled as

the output of a reference signal generstor :

x(t+1) Apx (t) + B W (t) (48a)}

z () = cpxp(t) + vi(t) (48b)

<¢3> The cost function is given as

J=E[%(y(N)—yr(N))‘QN(y(N)—yr(N))
N1
5 Lo ((y(i)-y (4))7Q(y(i)-y (3))+u' (i)Ruli)}
(49)
where Q and Qy are pxp real positive matrices, and R is
It should be noted that

in PVC future observations of v (t+k) from k=1 to k=T

an nxn real positive matrix.
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(T<N) are given a priori by system (48) and thereafter

only statistical quantities of Yr(t) are given. The

overall cost (49) is, however, fixed with horizon N,

which

other predictive control laws where both the overall
cost and the future reference signals recedes.

is a little different feature compared to the

For
comparisons with other predictive control laws the case
where N approachs infinity will be dealt with.

<4> The input is assumed to be free of constraints.

<§> As in RHTC, explicit prediction equations are not
used in the minimization of the cost function (49).
If the perfect measurement is assumed the control law
minimizing the cost (49) is given by [33]
a(t)=-[R+B'RB) 1B [Rax(t)+g(t+1) ] (50)
where K is the steady state solution of (43), and
gerl)=-(5 (T-lye'Quer+d (D (T, (3 (xrerocp () ®iap)
xr(t+T)—_Zl Fli-l)e'Qy (t+i)
i=
- ~ =1 - 'k
¢(k) = [A~B(R+B'KB) B'KA] (51)
The control law (50) is a similar form to the control

law (42) of RHTC. If horizon T is large enough for the
Riccati equation solution to converge to a steady state
value, then RHTC with an appropriate terminal weighting

F can be the same control law as PVC.

Successful applications of PVC to real systems are
reported  [36]. Tomizuka [37] provides PVC for
continuous time systems and PVYC problems with integral
actions are dealt with in ([34,35] for offset free
tracking.

It is known that the control law (50) is
asymptotically stable if and only if the system is

stablizable and detectable {55].
3. New stability results for predictive control laws

There have been some approachs to the analysis of
stability of input/output model
predictive control laws. Rouhani and Mehra [3,7]
that MAC is unstable for nonminimum phase systems , but
it to

properties based

show
was necessary assume a one-step ahead
Maurath et [14]
deal with the stability properties of DMC and show that

they are

implementation for the proof. al.

a complex function of design parameters.

Ydstie shows in [19] that extended horizon controllers
are BIBO stable under some conditions. All these
results rely on transfer function approach based on

input/output models, in which framework, however , the
stability analysis is restrictive and not easy.

We propose that state space models should be used for
the of

stability analysis input/output model based

predictive control laws. can be

It is shown in [20]

Input/output models
transformed to state space models.

that the predictive control laws in their original

forms can be represented in terms of state space model

parameters, which enables the stsbility analysis to be



done in the state space framework.
The state space analysis of model predictive control
is where the original system is given in
and the

done in [5],

the form of a state space model solution is

cbtained from the transformed impulse response model.

Stability properties of GPC is studied in [23,25].
Though they have ideas using state space models for
stability analysis they do not use the idea that the

contol laws can be represented by the transformed state
space model parameters.
results presented of which

Some new stability are

details are available in [20].
Results 1. < Stability Property of EHAC >

We transform the model (22) into a state space model
{4,B,C}
{A,B
, then

(in observable canonical form). If the system

} is completely controllable and A is invertible
the control law (31) is a stabilizing law for
any T>n .
Result 2. < Stability Property of GPC >

Since the disturbance can be ignored as far as the

stability properties are concerned, we transform the

model (32) without the disturbance term into the
following state space form
x(t+l} = ax(t) + bau(t)
ylt) = cx(t)
Note that
- - L -n-
l)A=A(q l)(l—q l)=l+alq Lo gn+lq n-1
1) GPC parameters setting
pu=l, D=1, T=any positive constant, r=0

(52)

unit circle, then the control law (33) is a stabilizing

If all the roots of polynomial lie within the

law.
_ m,otl v o= s n ZiR
H{z) = Kz (a;R+Rq)z '+ + (a,, (K¥K 5 ) (52)
where
B = (cb)? + teap)? + ...+ (eaTp)?
- = = 2 T-1 T
(K, K, . Kn+lJ = [cbcA+cAbcA™+ ... + cA  bea |

2) GPC parameters setting
pu=T=any positive constant, D=1, and r=0
If all the roots of the polynomial (53) lie within the

unit then

circle the control law (39) is a

stabilizing law.
= m m-1

H(z) = boz +b12 L 5 (53)
This fact says that the contrel law is unstable for
nonminimum phase systems under the given parameter
setting. However, this is an expected result since the
given parameter setting is equivalent to the parameter
setting: pu=T=D=1 and r=0, in which case the control

law becomes a one step ahead control law.

4. Conclusions
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This paper shows that many different
methods

control design

which have been developed by so many different
investigators and so many different

approachs can be

categorized as one group of control design methods
distinguished from the other wvarious control design
methods. We call this "Predictive control”. Though
the predictive control laws have been less known

comapred to other design methods, listed references,

not complete, say that there are considerable research

results related to the predictive control , most of
which are developed independently.
Theoretical development,

left

however, are not perfect and

much are to be done. Even stability properties

introduces some
It would be a

meaningful work to find out common properties which all

are not known completely. This paper

results on the stability properties.

the predictive control laws possess and to pick out

special properties which are peculiar to each control

law. The common properties may be attributable to the
of  the
properties to the different plant models.

that most

adoption same strategy and the special

known

can be

It is
laws

of the

of the predictive control

deadbeat controllers by proper setting tuning

parameters [19,23,25,50,56]. We can see in this paper
that the solutions of predictive control laws have the
almost same form. These facts imply that the

predictive control laws can have some common properties

and be unified to some degree.
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