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Abstract

The dynamic characteristics of a load-sensing
hydraulic servo system are complex and highly
unstable. Another property of the system is that
the setting value of pump compensator is closely
related to energy efficiency as well as control
performance of the system. This necessitates the
development of an effective control algorithm
which guarantees good control performance, stabi-
lity and energy efficiency. This paper considers
a suboptimal PID control for the velocity control

probtem of the load-sensing hydraulic  servo
system. The vresults of simulations studies and
experiments show that the proposed suboptimal

controller can produce much better control perfo-
rmance than nonoptimal controllers and give effe-
ctive energy efficiency.

1. Introduction

The Tload-sensing hydraulic system utilizing a
variable displacement pump is an energy saving
system to minimize power loss by the load-sensing
mechanism[1-3]. However, its dynamic characteris-
tics are very complex and highly nonlinear.
Furthermore, the stability characteristic is
critically deteriorated compared with that  of
the conventional system due to addition of the
load sensing mechanism[4]. This is because the
interaction between dynamics of the pump part and

that of the load part becomes stronger due to
addition of the 1load-sensing mechanism. These
features significantly add complexity to the

controller design of the hydraulic servo system.
For example, an advanced modern control such as a
state feedback based upon a dynamic observer has
many difficulties in actual implementation. In
this paper, a simple proportional-plus-integral-
plus-derivative (PID) control based upon output
feedback is considered for easy implementation of
the load-sensing hydraulic servo system.

There are several classical approaches to
design the PID controller of servo systems. The
root locus method is one of the classical contro-

1ler design methods. In designing a linear con-
trol system, the root locus method is quite
useful since it enables the designer to find the

closed-loop poles from the open-loop poles and
zeros by providing a graphic display,and decide a
controller gain[5]. The classical tuning rule of
the PID controller, which was proposed by Ziegler
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and Nichols [6, 7] have advantages to determine
the PID controller gains at a time and produce a

reasonable  performance for open-loop stable
systems. However, these <classical approaches
still have difficulties to be applied to the

controller design of the load-sensing hydraulic
servo system. The root Tocus method is not appro-
priate because this method is effective in tuning
only one parameter of a linear control system.
The Ziegler-Nichols rule, also, 1is not approp-
riate for highly unstable systems because this
method can be applied to a system which is open-
loop stable and responds to step change 1in a
nonoscillatory manner. Therefore, it is difficult

to obtain a satisfactory performance by employ-
ment of the Ziegler-Nichols rule in the highly
unstable load-sensing system. Therefore, it s
necessary to develop an effective design method
of the PID controllier suitable for the load-

sensing hydraulic system.

There 1is an important property in addition to
the above control problem of the load-sensing
system, which is that a setting value of the pump
compensator is closely related to energy efficie-
ncy as well as control performance of the system
[1, 2]. In order to accomplish not only good
control performance but also high energy efficie-
ncy of the system, decision of the setting pres-
sure as well as the controller design should be
carefully done in the design stage of the servo
system.

The purpose of this paper is to suggest a
suboptimal method to simultaneously determine the
PID controller gains and the setting pressure,
and to demonstrate effectiveness of this subopti-
mal method. The problem considered herein is to
control the velocity of a load inertia operated
by the Tload-sensing servo system. In order to
deal with this control problem, the investiga-
tions were made in the following procedures. (1)
A mathematical model was derived, which reasonab-
1y vrepresents the complex dynamics of the load-
sensing hydraulic system. (2) A subopitmal design

method of the PID controller was presented. (3)
Based upon the derived model and the design
method, suboptimal PID gains and suboptimal set-

ting pressure were obtained. The effectiveness of

the suboptimal system was illustrated through
computer simulation works and experiments. The
suboptimal output responses were compared with

nonoptimal output responses, and the energy effi-
ciency of the suboptimal system was discussed in
some details.
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Fig. 1 Structure of the load-sensing hydraulic
system

2. The Dynamic Model of the System

There are two types of the load-sensing mecha-
nism in hydraulic systems: (1) load-sensing pump
control, and (2) load-sensing valve control. The
pump control type 1is more efficient from an
aspect of the energy saving effect than the valve

control type. In this paper, the load-sensing
hydraulic system utilizing the pump control s
treated. The ogverall structure of the system is

The structural difference of the
system
is that

shown in Fig.1.
load-sensing system from a conventional
utilizing a variable displacement pump
the load pressure(P,) is fed back to the pump
compensator. A mathematical model to represent
the load-sensing system can be formulated in the
following manner.

The dynamic equations representing the load
inertia and hydraulic motor consist of an equa-
tion of motion of the load inertia and a flow
continuity equation of the tine volume[8]. These
equations are given by

J8+ B8O+ T, = DR (1)
Q = D8+ LR + (V/28)5 (2)
where & is the angular velocity of the Tload

inertia, T, is the external torque applied to the
motor, P, s the load pressure, and Qg is the
load flow of the servo valve. The model equation
of the servo valve can be simplified as a first-

order dynamic equation of the spool motion and a
static equation for the control flow (QQ) of the
servo valve. They can be written as

Ty X + Xy = Kyi (3)
Q, = sgn(PP -sgn{x )P, )K x, |PP - sgn(x,)R | (4)
where i is the input current of the servo valve,
Xy is the spool displacement of the servo valve,

T, is an equivalent time constant, and Pp is the
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pump outlet pressure. The dynamic model of the
load-sensing pump shown in Fig.l can be simpli-
fied by several assumptions without significant
error[9]; small volume of the yoke control cylin-
der, negligible inertia torque of the yoke and
negligible friction torque of the yoke motion.
Then, a simplified model of the pump can be given
as

Dpfy - Lpfp ~san(x)0, = (Vp/A)F, ®
Dcéfa- Lefe = Kp(max(Py ,Pp) + P, - Pp)m
(6)

(6 - R)¢3= DyPp - DR + 6% )

where P, is the pump pressure, ¢° and ¢ is the
initial angular position and angular displacement

of the yoke respectively, Fe is the pressure of
the yoke control cylinder,” Py is the setting
pressure adjusted by a compensator spring, and

the other parameters are spring constant, leakage
coefficients and flow coefficients. In the equa-
tion (6), W and Y are the auxiliary variables to
describe the nonlinearity of the pump compensa-
tor. The max(P,,PZ) means a feedback pressure to
the pump compensator, which is chosen as the
larger pressure between two pressures of motor
ports Py and P,. The pressures of P,and P can be
described by the pump pressure (P 3 and the load
pressure{P, ) from the symmetry condition of the
servo valves' orifices[8]. These variables can be
described as

P, = (Pp + Py)/2, and P = (P - )/2  (8)

L
0, Y =-1

and for max(P,, Pp) + Py 2 Pp

(9)
W=1, and Y =1 formax(PI,P2)+Pd<P?

Based upon the mathematical model of
(1)-(9), a suboptimal control method will

presented.

equations
be

3. Effect of the Setting Pressure

The setting pressure represents a pressure drop
of the servo valve and it is directly related to
power Tloss which is dissipated into heat. The
power loss of the system may be described as a
steady loss since the power loss for transient
response time is negligibly small in common hyd-
raulic systems. Then, the power loss can be des-
cribed as the following equation.

L= Pp(ts) QP(tS) - Pﬂ(ts) QQ(tS)

where tg is the settling time, Pp is the pump
outlet pressure, Qp is the flowrate generated by
the pump, P, is the load pressure and Qq is the
load flow. The first term of the Eq. (10) denotes
a power generated by the pump, while the second
term denotes a power required in driving the

(10)

load. Thus, the difference between the two terms
is a wasted power.

If the Tleakage flows of LpPp and L.P. are
assumed to be negligible in the equations of
and (6) and the system is in a steady state, the
pump flow of DP¢ is same with the load flow (Qq)
and the pump pfessure (Pp) is the value of the
feedback pressure (max(P;,Ps)) plus the setting

pressure {Py). That is, the pump flow (Qp) in the
Eq. (10) 1is nearly same with the Toad flow (Qg )



and the pressure difference between the pump
pressure (P;) and the load pressure (P, ) is kept
constant by the setting pressure (P;) of the pump
compensator. Thus, the power loss of the system
is found to increase proportionally with the
setting pressure. The setting pressure should be
as low as possible in order to minimize the power
loss of the system. However, an excessively small
setting pressure deteriorates control performance
of the servo system [1]. The low setting pressure
reduces acceleration rate of the pump pressure
and the load pressure and, thus, deteriorates the
capacity to drive the load inertia. Therefore,
the setting pressure affects the control perfor-
mance as well as the power loss, and it should be
determined as a trade-off value between the con-
trol performance and the power loss.

4, Suboptimal Controller Design

The suboptimal PID control problem of the load-

sensing hydraulic servo system can be considered

based upon its open-loop model! which s formu-
lated in the previous section. When the PID con-
trol is applied to the load-sensing hydraulic
system, the schematic block diagram of the
closed-loop velocity control system is shown in
Fig. 2. The PID control may be described by

t .
u = Kpe + Kijoe dr + Kye (11)

where e =8,-8. 8, is the desired load velocity
and § means the output velocity, and u indicates
the control current input (i) of the servo valve.
The controllier gain parameters Kp, K, and Ky are
the proportional gain, integral gain, and deriva-
tive gain, respectively.

A suboptimal control problem to tune the PID
controller gains for an arbitrarily chosen set-
ting pressure (Py) may be formulated as a stan-
dard servo problem. The control objective, then,
is to minimize the cost of a performance index
which represents the square of the error between
the desired velocity and actual velocity, and the
control input energy. The performance index J. is
described as

- » 2
Je = .{:: [{Bd - e(t)}z + PIU(t) 1dt (12)

where @ is a weighting factor, and ty and tg are
the initial time and the settling time respecti-
vely.

The PID controller gains for a pre-chosen

setting pressure are determined so that the cost
of the performance index is minimized. However,
the standard suboptimal system may not accomplish
an effective energy efficiency of the system
because the performance index of the Eq. (12)
considers only the control performance without
consideration of the energy efficiency. In order
to achieve the effective energy efficiency, the
PID controller should be designed by try-and-
error method for various valuesof the setting
pressure. This problem can be simply solved by
adding the power loss of the Eq. (10) to the
performance index of the Eq. (12), and regarding
the setting pressure as another design parameter.
Then, the new performance index Jp is described
as

Je = Bl Polts) Qplts) - Py (ta) Qylts) ]
I 8- B s fun)® ] e

where Q_and PZ are weighting factors, and t, and
ts are the initial time and the settling time,
respectively. The settling time is defined by a
time at which the output response firstly reaches
a steady state and stays within a specified small
bound. The control input u(t) is constrained by a
saturation value Ueats which is given by

|u(t)|éu50‘t (14)

Also, the control input has been indirectly con-
strained by including the input energy term in
the performance index to avoid large current
input.

The optimization algorithm used in this work
was the Rosenbrock algorithm[10]. Because the
Rosenbrock algorithm is based on the direct
search method, the dynamic equations (1)-(9) and
the controller equations of (11) and (14) should
be solved to obtaine the system responses at
each iterative operation of this algorithm. The
system responses for a given initial condition
were obtained by numerical integration via the
fourth order Runge-Kutta algorithm. The numerical
step size was 1 msec.

5. Simulations and Experimental Results

The suboptimal PID controller gains and subop-
timal setting pressure have been obtained via the
suboptimal design method. The values of the
system parameters used in this work are listed in

Setting
Pressure

External
Torque

Shuttle
Valve

A PID

8 — trol
Desired - Controlier
Velocity

Mator & [:'0)
Hyd: Line Output
Yelocity

Fig. 2 Schematic block diagram of a load-sensing hydraulic servo

system using a PID controller



Table 1.

The system parameters

B = 0.03 Nm/(rad/sec) D, = 1.283x10_5 m?/rad D = 4.434x10~5 m> /rad

Dp = 1.321x10°% mw?/rad Dp = 5.582x10™2 m3/rad G = 26.44 Nm/rad

i =0-20 mA J =0.002 - 0.05 Kg-m> Ky = 2.5x107° m/mA

Ky = 7.45x107%  (m¥/sec)/m Kp = 1.76x10714 mé/ (N2 sec) Le = 3.51x1076  (m¥/sec)/MPa
Ly = 3.88x1076 (m®/sec)/MPa Lp = 1.58x10°5  (m¥sec)/Mpa Py = 0.2 - 1.8 MPa

R =18.92 Nm/rad Te = 0.0 Nm Ty = 0.0071 sec

Vg = 1.83x107% m? Vp = 1.7x107% m? @ = 6.86x10  MPa

#, =1.03 rad

Table 1. The initial condition is in a state that
the servo valve is fully closed and the load
inertia 1is standing still. The desired output
velocity is 105 rad/sec (1000 revolutions per
minute). The weighting factors of £, and ¢, are
chosen to be 0.75 and 0.2 respectively.

A series of computer simulations and experi-
ments were performed in order to illustrate the
effectiveness of the suboptimal design method. An
experimental test rig was installed, which s
identical to the load-sensing hydraulic servo
system shown in the Fig. 1 and Fig. 2. The pump,
the servo valve and the hydraulic motor used 1in
this work are Sperry-Vickers PVB series 29 pump,
Moog 73-102 servo valve and Nonzelli 40002-MC
piston motor. Their geometrical and dynamic data
are the same as the values listed in Table 1. The
auxiliary relief valve shown in the Fig. 1 is set

as 12 MPa (about 120 bar) for safety's sake and
the pump outlet pressure is limited by this
value. The output signal of the load velocity is

measured by wuse of a tacho generator and this
signal is filtered by a analog filter with cutoff
frequency of 20 Hz. The computer simulations are
similarly done with the experimental procedure,
and the equations of (1)-(9) and (11) are solved
via the Runge Kutta method under the input con-
straint of the Eq. (14). With aid of the results
of computer simulations, various properties of
the load-sensing hydraulic system can be effecti-
vely observed.
The computed suboptimal controller gains and
setting pressure are obtained to be Kp=0.164
mA/(rad/s), K;=0.912 mA/s(rad/s), Kd=0-0£4 mAs/
(rad/s) and 0.83 MPa, respectively. In Fig. 3,
the suboptimal response of the load velocity is
compared with two nonoptimal responses. One of
two nonoptimal responses plotted in this figure
is obtained from a controller whose PID gains are
computed via the Ziegler-Nichols rule for the
suboptimal setting pressure of 0.83 MPa, and the
other response 1is obtained from a controller
whose PID gains are arbitrarily chosen for the
setting pressure of 0.83 MPa. The PID controller

gains based upon the Ziegler-Nichols rule are
computed as Kp=0.110 mA/{rad/s), K.=1.090 wmA/
s(rad/s), and K4=0.0028 mAs/(rad/sj, and the
gains of the other nonoptimal controller are
chosen as Kp=0.100 mA/(rad/s), K- =1,500 mA/
s(rad/s) and Kg=0.050 mA/s(rad/s). The Fig. 3
shows that the suboptimal response reaches the
desired velocity within a reasonably short time
and without an excessive overshoot, while the
response based upon the Ziegler-Nichols rule is
unstable, showing a limit cycle. The nonoptimal

response whose controller gains are chosen in an
arbitrary manner has an excessive overshoot and a
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relatively long settling time. This figure clear-
ly shows that the suboptimal system has much
better control performance than the nonoptimal
control system.

from observation of the controller gain values
of the three different systems, one remarkable
point is that the system obtained via Ziegler-
Nichols rule is unstable due to the low deriva-
tive action, while the suboptimal system and
nonoptimal system with large K4 gain are stable.
This fact shows that the highly unstable load-
sensing system should have a large derivative
action, and the Ziegler-Nichols rule is unsuitab-
le for this kind of system.

Various responses of three different suboptimal
systems, such as, the responses of the load velo-
city (6), pump pressure responses (PP) and load
pressure (P, ) are plotted in the Fig. 4. The
system of the Fig. 4-(a) is the suboptimal system

whose setting pressure and controller gains are
determined as optimal values to minimize the
performance cost of the Eq. (13). Whereas, the

systems of the Fig. 4-(b) and Fig. 4-(c) are so-
called standard suboptimal systems whose control-
ler gains are determined as optimal values to
minimize the performance cost of the Eq. (12) for
the pre-chosen setting pressures. The effect of
the setting pressure can be observed from the
Fig. 4. MWhen the setting pressure is low, i.e.
Py=0.3 MPa in the Fig. 4-(b), the load velocity

response rises in a slower rate than the case of
the Fig. 4-(a). Furthermore, the velocity
response has a steady state offset because the

setting pressure of the pump compensator %is lower
than a 1imit value at the maximum opening of the
servo valve. It is, thus, observed that the low
setting pressure deteriorates the control perfor-
mance of the system. However, the power loss is
very small due to the small pressure drop
between the pump outlet pressure and the Tload
pressure. 0On the contrary to the low setting
pressure, when the setting pressure is much high,
i.e. Py=1.5 MPa in the Fig. 4-(c), the power loss
of the system is much greater than that of the
system with the setting pressure of 0.83 MPa,
which is shown in the Fig. 4-(a). These results
indicates that the setting pressure should be as
low as possible to minimize the power Jloss but
the higher setting pressure gives the faster
response. From such a view point, the suboptimal
system of the Fig. 4-(a), which has the subopti-
mal controller gains and the suboptimal setting
pressure, may be concluded to satisfy the energy
efficiency as well as the control performance of
the system. Therefore, the proposed suboptimal
design method can be concluded to be an effective
method  for the load-sensing hydraulic servo
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system.

6. Conclusions

A mathematical model of a load-sensing
hydraulic servo system has been derived. Based
upon the model, a suboptimal design method to

determine not only the gains of the PID control-
ler but also the setting pressure of the pump
compensator has been considered. Through a series
of simulation studies and experiments, the effec-
tiveness of the design method was illustrated by
comparison with nonoptimal cases.

Based upon the results obtained from the simu-
lations and the experiments, the following major
conclusions can be made:

(1) The suboptimal control system has much better

control  performance than several nonoptimal
control systems.

(2) The setting pressure is another important
parameter which should be determined at the con-

troller design stage, since it greatly influences
the control performance and the energy efficiency
of the system.
(3) The suboptimal design method system accom-
plish an effective trade-off between the control
performance and the power Toss of the system.
These results implicate that the proposed
suboptimal method can be effectively applied on
the load-sensing hydraulic servo system.
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