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IMPROVEMENT OF THE FAST KAILMAN

ALGORITHM®>S NUMERICAL STABILITY
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I. INTRODUCTION

The design of adaptive filters with optimum

learning, in the sense of minimizing the

accumulated squared error between the output

signal and a desired response, is of ma jor

importance in many areas of digital signal
processing, estimation, and control.
Recursive least squares(LS) algorithms are

ones which are belong to this class algorithm.

Due to their extremely rapid convergence
properties, these schemes find many
applications in speech processing, noise
cancellation, design of fast start--up
equalizers, spectral estimation, etc. and
that, the recently introduced fast Kalman
algorithm (FKA) requires only O(p) opertions
per recursion. [1],[2],{3], (4] This  high

reduction of computional complexity has raised

a new growing interest in exact LS adaptive

algorithms since they now require the same
order of computation as the suboptimum gradient
type algorithms —the least mean square (IMS)
algorithm.[1],[2],[5]

Inspite of these good characteristics, the
FKA has poor numerical stability when it is
used in the long term operating system with
smaller than one.[1],[5] In

the

forgetting factor
order to improve this numerical stability,

normalization method, resecuc variable method

etc. were sugested.[4] But these methods can

not make the FKA numerically stsble, and CHUNG

introduced the correcting constant  which
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improved the numerical stability withoul loss
of the signal detectability and the
adaptibility.[1]

system
In this paper, these role of the correcting

constant 1is demostrated by an example and its

linearized system wmatrix  introduced by
S.LIUNG.[6] The FKA is given in section II, and
its stability analysis is given in section ITI.
To demonstrate the above analysis, simulations

are given in the next section.

II. THE FKA AND CORRECTING CONSTANT

The shifting poperty of the covariance matrix
is the main tool to derive the FEA and standard
form of the FKA is as follow.

at the t-th time step

-
To= Yt - Xy b (2.1
(form the forward residuals)

T (2.2)
= %f—p - 2¥+1¢h-1
(form the backward residuals)

.3
Oc= By + Ke e (2.3)
(update parameter vector of
the forward predictor)

& = Y - 2, Be (2.1)
(form the prediction error)
Eg = AEe T+ €7 (2.5)

{(form the weighted accumulation of e%7t )

['mt _rE'e
”J [aq-eu:.:ej

(form the ‘extended Kalman gain

12.6)

vector)



K = (K + by KD /0-6K2) — (2.7

(update the Kalman gain vector)

B = Fq + Knly

(update parameter vector of the

(2.8)

backward preditor)

initial values

ko= 80 7 %= ¢ =0, E=§ ( >0 )-(2.9)
The central advantage enjoyed by this FKA
over the npormal Kalman recursion is that of a
lower computational cost —it is required only
O(p) multiplication per recursion, and more

significant this computational advantage is
with increasing model order P-

And an auxilliary variable 7 (defined as

s
%Ky %, ) role as a likely-hood variable. [2]

This makes the FEKA be used to detect statistic
for non—Gaussian components in the
observations, simulation result indeed

demonstrated that 7, ~would take high value
(close to 1) at non—Gaussian components. It
therefore also acts as an optimal gain control

in the sense that the factor 1/(1~7 )

can
ad just the gains  instantaneously when
non-Gaussian components are present in the
observations.
III. NUMERICAL INSTABILITY OF AND

CORRECTING CONSTANT

Inspite of the above good characteristices,

unexplained explossions in the FEKA with
forgetting factor A ( <1 ) have been noticed to
occur under some circumstances.{4],[5] Though
this explossion do not occur when A is unity,
the ‘adaptablility and the detectability of the
is decresasing with

At this point CHUNG

non—Gaussian component

recursion time increasing.
sugested correcting constant which can maintain
the adaptability and the detectability of the
FKA with A<l. The cortééting constant o is a
constant which keeps the accumulated sum of in

eq.(2.5) from being negative such as;

Et = AEe~ TE&T 1<

Since the general analysis of

(3.1)
the role of

this correcting constant is difficult, We shall
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here only consider a counter example which is
used to show the FKA be pumerically unstable by
S.Ljung et al.[6}
Let us apply the FKA in section II with
eq.(3.1)

shall call this algorithm as modified FKA — to

instead of eq.(2.5) — hereafter we

a simple first order AR model. Here x,(=y,) is

a scalar and the modified FKA gives

By "4 (1 Keye-1 ) Ky (3.2a)
By = AR+ (¥ +6e) [V +0e1(1
Ke Yo d %K Yy Yyl Hex (3.2b)
m= Ep{ya [0 (1K ve) Kewg Iid (3.20)
.= Ky +[0e (1-K - Koy, Jmy (3.2d)
P = [ Py (Yt P e ) 1/ 110 ey
*ha Y, (3.2¢)
Bn= m,~ by uy (3.2f)
Introduce the state vector X
X(E) = 18, . by KagpEgl (3.3)
Then equation (3.2) can be written as
X(t) = £( X(t-1),% » %y (3.4)

The system matrox of the linearized difference
equation is

F(O) = &F (X, % , Ve )Ix-xct~n (3.5)

It is still difficult to determine { F(t) } and
analyze its stability properties for general
input sequences { % }. We therefore choose the

particular sequence as LIJUNG in [6]

1 if  t=4k

v = | 0 if  t=4k-1 (3.6)
-1 it t=4k-2
0 if  t=4k-3

wherce k is an integer. This gives the nomipal

trajectory for large k as follow,

X(ak)  =[ 0, 0, 53 , so (3.7a)
X(ak-1) = [ 0, 0, 0, 5,1 (3.7b)
X(4k-2) = [ 0, 0, -s3' , 8 1 (3.7¢)
X(4k-3) = [ 0, 0, 0, 5, 1" (3.7d)
where
=1/ (1-X )+ a/(1-A)

se= A/ (1-AD+ a/( 1 -A)
The calculation of eq.(3.5) for the case of
eq.(3.6) is very tedious and the results are as

follow,



F(4k) = 1 0 -1 o (3.8a)
0 1s' 0 o
0 0 o0 -s*
0 0 0 A
F(4k-1)= s, 0 0 0 (3.8b)
st (-2 0 o
-s7' (1-s' 0 o
9 0o o0 A
L 4
R [ h
F(4k-2)= 1 0o 10 | (3.8)
0 (15 0 o
0 o o0-s
0 0 0 A
L. .
- -
F(4k-3)= (1s) 0 0 0 | (3.84)
-s;' (1-85'0 o
s’ (1-s§'0 0
0 0 o0 A
It is shown that we always have
-
F(t)F(t-1)= K Fa0 O (3.9)
E«1 0 0
0 0 0 Fy
00 0 A

Fy=1+(1-2) (1-X ) /m.n
Fas—(1- )/ [A+(1+ ) )
Fa=—(1- XD [ A" +(143) v | /m.n
Fu=- 12 /0
and m= A+(1+A)
n= 1+(1+A) o
The matrix F(t)is

where

time-varying, but the
product F(t)F(t-1) is time invariant whgn t is
so large that the transient of the form A can
be neglected. The matrix F(t)}F(t-1) has one
eigenvalue at the origin and one A". The sum of
the two others is
2+(1-2) (1-2) /m.n
Equation (3.10) show that an eigenvalue of the
matrix F{t)F(t-1)

(3.10)

is larger than unity but we
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can make it close arbitrarily with incerasing

the correcting constant .
IV.SIMULATIONS AND DISCUSSION
To demonstate the effect of the correcting
constant we have done computer simulations. In
these simulation, we use data signals generated

as follow,

y¢ =10v¥20sin 0.27t+10012sin 0.57t
+10120sin 0.77 t+ne (4.1
where n,is normal distributed white noise with
unity variance. The signal to noise ratio of
the data signal is about 41[db}, and the order
of AR model used simulations is chosen as 18.
The modified FKA is used in these simulations
forgetting factor A 0.99 and
0, ¥2,1,2,5

simulation

with constant

various correcting constant «« as
shows these

respectively. Fig.1

results. 1In this Fig.,J(t) is the performance
measure of the AR model defined short-time
average of

x7 8] / 1w (4.2)

and is plotted one sample per 20

20 log( 1|y,

recursion.

The show that the FRA with =0, o~ 2

explose about t=2200,

results

t=4600 respectively and

show that the FKA with «>1 do not explose
until t=5000 as our expectation. But the
performance measure J(t) is very simillar
except those after explosion whenever the
correcting constant « increase.
V.CONCLUSTONS
The analysis of a certian example and

simulations given in the previous sections show

that the modified FRA is more stable than the
standard FKA without loss of the performance of
it. The general analysis of modified FKA’s
the open problem with

the

numerical stability is

more simulalions in order to prove

stability of it.
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