‘87 KACC 1987.10.16 ~17

A 2D-FFT ALGORITHM ON MESH CONNECTED MULTIPROCESSOR SYSTEMS

Hiroaki Kunieda and Kazuhito Itoh

Department of Electrical and Electronic Engineering
Tokyo Institute of Technology
Japan

Tokyo 152,

Abstract: A direct computation algorithm of two
dimensional fast Fourier transform (2D-FFT) is
considered here for implementation in mesh
connected multiprocessor array of both a 2D-
toroidal and & rectangular type. Results are
derived for a hardware algorithm including data
allocation and interprocessor communications.

A performance comparison is carried out
between the proposed direct 2D-FFT computation
and the conventional one to show that a new
algorithm gives higher speedup under a
reasonable assumption on the speeds of opera-
tions.

1. Introduction
2-D FFT is used in most image processing
devices, in applications such as pattern recog-
nition, image reconstruction and correcting of
image distortions. One of methods for computing
2D-FFT is to carry out twice one-dimensional FFT
with respect to rows and columns of two dimen-
sional data (the indirect 2D-FFT method). The
well-known Cooley-Tukey algorithm [11 for 1-D
FFT can be applied. Recently several re-
searches have been reported for 2D-FFT to be
calculated on multiprocessor systems [21(3].
Shorter computational time can be achieved on
parallel processing by using multiprocessors in
each stage of 2D-FFT computations. Although this
type of computer is not vet commercially
available, much research in the area indicates
their potential advantage in various type of
applications.

There is an alternative way to compute 2D-
FFT [41(5]. [t is the direct method which com-
putes 2D-FFT directly by using 2D-butterfly
operations. By this direct method, the number of
the multiplications of direct 2-D FFT algorithm
can be reduced to 3/4 of the multiplications of
indirect 2-D FFT algorithm.

In this paper, we investigate a new 2D-FFT
hardware algorithms based on the direct 2D-FFT
method. We specifically consider here two kinds
of multiprocessor systems. Both systems consist
of a mesh connected array of identical Processor

Elements (PE°s) with minimum storage require-
ments. The result shows that the shorter
processing time can be achieved than the time

based on the indirect 2D-FFT on the same multi-
processor systems.

2. 2D-FFT Algorithm
2

We will consider here an NxN=N" point two-
dimensional dlscEete Fourier transform implemen-
tation where N=2" or n=log,N. Let's A,(i:k) and
An(u:v) be the original ang Fourier tgansformed

two dimensional data respectively where
0<i,kyu,viN-1. The twc dimensional discrete
Fourier Transformation is defined by the

equation for all u and v:

X(u:v)= Za(jon(i:k)leu)*kav for 0<u.v<N~1
k i
/N

wN=exp(—J2 (1)

851

In this equation,
of the other.

each sum is independent
Therefore they can be computed on

after the other wusing one dimensional FFT
techniques.

Direct 2D FFT algorithm was reported by
G.E.Rivard [41(51. The algorithm is the expan-
sion of the algorithm in ID-FFT case. 1t con-
sists of stage operations with N© two-
dimensiogal data inputs and outputs and in each
stage, N°/4 two-dimensional butterfly operations

will be carried out.

We express all indices in the form as

f=1 oMl oL + 112 +ig
and i, are equal to 0 or 1 and are the

of tﬁe respective bit positions in the
representation of 1. All arrays will now be
written as functions of the bits of their
indices. The k-th stage 2D-butterfly operations
works as follows where A i:J) and A (i:]J) are

(
and output d5td of

n-1

contents
binary

the input the k-th stage
respectively.
Ak(l.J)
A O el gt i o e)
RLTREE FUETEN PLPS RN MRS LN P

) L. _ o RS S
AL U e O dgidp geme L) #Bex (1) 'n-k
AL U e b it d) (e 00 J G *(-1) 0=k

LLSUPS FPRETS FETS PES ISPRETS PERR POLE:NE 1o

w(-1) in-kx(-119n-x

n-2 . n-k
where B, =W 1n-k+12 * ln—lz,
kN "
ey 212 oy 2P
Ck—wN n-k+1 n-1%,
for 0<i,J<N-1, ie. ik’ Jk=0 or 1 (2.
The butterfly operations in the 1st stage
are carried out among four data A, (i:Jj) whose
(n-1)th bits of i and J indices arg different.

In the second stage, they are done among data
A,(i:j) with different (n-2)th bits of i and J
1ﬂdices In the last stage, the operations are
performed among data An(i:j) with different Oth
bits of i and Jj indices.

Each butterfly operation in each
consists of additions or substractions of the
four terms in equations (2). Since all four
terms 1in four equations (2) for A (i:j) of only
different i__, and Jj__, are the sdme in value,
it will be e?fkcient Bo¥perform these four equa-
tions as the sets of operations. If we can
calculate the three products once for each set
of four equations, their execution time for each

stage

stage would be proportional,to 3*(N2/4)

2 complex
multiplication time and 8»%(N“/4)

addition time.

The outputs An(i,Jj) of the last n-th stage
give the desired Fourier sums. However, the
indices of an An(i:j) must have its binary bits
put in reverse order to vield its index in the
array Xnti:j) given by equations (1) as

Xn(ln-l’—__’lﬂ : Jn—l'___'JO)

L e N A L R (3>

3d. Mesh conpected multiprocessor array

We consider here a mesh connected multi-
processor array, because we think mesh connected
array may be suitable for 2D Signal Processing.
Fig.l and 2 show examples of 16 PE's of two
different type of arrays which we have chosen
among various structures of multi-processor
systems. Fig.l is called as a 2D toroidal array
in which each PE has a equal position. VWhile,
Fig.2 is called as a simple rectangular array. A
rectangular array has an advantage that it has
only data transfer paths between adjacent PE's
which will be suitable to be implemented in
future one chip VLSI.

The mesh connected arrays with P PE's and
p=2" are arranged in a P x square matrix.
Each PE is connected to four nearest neighbors
in a two dimensional grid. If each PE's number

is represented as PE(i,j) according to its
geometrical position in a two dimensional grid
where 1,J=0,--,rP-1, PE ti,J) is connected tao

four PE's PE(i,j-1),(i,J+1),Ci~1,J),Ci+1,3) mod
rP in a 2D toroidal array and four PE's PE(i, j-
D, i, 3+1),0i-1,3),(i+1,3) in a rectangular-
array.

We assume for both types of arrays that
each PE has four bidirectional 1/0 ports which
can transfer data to and from the neighbor PE's,
Furthermore, we assume that each PE can input
one data from one of the four neighbor PE's and
at the same time can output one data to the four
neighbor PE’s.

s If the
N=, the

number of two dimensional data is
same amount of data storage capacity
will be required. we assume each PE 2has its
local memory with capacity of N®/P. We
additionally assume that there is a central
controller that supervises the operation for
interprocessor communications.

PEg.o PEy.y

@SSy

T

1.1
|] I FJ~ 1
PEEU"‘“ PEE'1 [PE PEE:i

. 2.2 Bl
<::: F, I [T
PE&uT‘ PB4 PEs.ar 1 PEas
R T

NN,

Fig.l 2D toridal Array (P=16)

PEmuL‘{fEm1F—'PEmEP—'PEms
C T T T

PE, o PE, i PE{ 2 PE; 3

L L1
PEE.D)——J PEE.l"—J PEE,E'—— PEEJ

L1 1

PEs of— PE5 (f—— PE; PE; 5

Fig.2 Rectangular Array (P=16)

4. 2D-EFT Hardwa

The input data can allocated in many ways.

We consider here the data allocation in which
the input N x N matrix data A,(i:j), _0<i,J<N-1
will be partitioned into squarg JP x /P submat-

ricies, A kl, 0¢k,1<{P-1 and each submatrix A,k!l
will be gllocated tozthe PE(k,l). Local memgry
of PE(k,1) contains N°/P input data. This type
of the data allocation is suitable also for the
other image processing applications. An example
of this data storage is shown in Fig.3 in the
case of N=8 and P=4.

Fig.4 shows the other type of the data
allocation for N=8 and P=4. The input N x N
matrix data A (i:j) will be partitioned into
(NP} x N subgatriceies and each one will be
allocated to each PE. This type of data alloca-~
tion has been used for the indirect 2D-FFT algo-
rithm.

From this 1initial data allocation, the
first several stages of FFT computations require
the data transfers. According to our investiga-
tion, it 1is much more efficient to first ex-
change all the data required to vproceed the
maximum number of stages of FFT computations
without interprocessor communications and then
to start FFT computations. If FFT computations
will not be able to continue without data trans-
fers, the same procedure will be repeated, that
is, to change data allocation and continue FFT
computations. The following 2D-FFT hardware
algorithm are derived for computinﬁ 2D direct
FFT. This algorithm is valid for n»2" or NP.

[2D-FFT hardware algorithml

(1) Bit reverse data transfers

(2) Ist to (n-m)th stage of FFT computations
(3) Bit reverse data transfer

(4) (n-m+1)th to nth stage of FFT computations

0do 10203 o4osodoT
SR EE I
2012223428282
30131(3233}|3 41353637

404 1f4fa 3[4 4ladlagar
50615253 [5 4555667
60616263 [64l6566/67
707173 [T Al TeTT

Fig.3 Square type data allocation (N=8,P=4)

0001j020304/05060°7
1014113141516

202 1lod2da4ad262T
3031]39333435/3637

4041/424344)4546/4 T
505152636 4556606 7

6061|626 364656667

7o U7 2737475767

Fig.4 Row-wise data allocation (N=8,P=4)

852

(1) Bit reverse data transfers

Bit-reverse-data-transfers are defined as the

transfer operations to transfer all the data

from PE's to PE's in such a way that data
X(ln_l.——-~.10 : Jn_l.—----JO)

from PE(ln-l'-"-’ln—m Jpopr T dgy? te

PE(iO,il,---,im_l JO'J1’_'_'Jm—1)

for 0<i.,J¢<N-1.
As the result of these operations, the data
'10 Jn-l"'""JO) of the same i

will be stored in the same PE.

Aglipyr=m n-

(2) 1st - (n-mlth stage of FET computations
Each PE computes the 1st to (n-m)th butter-

fly stages without interprocessor communica-
tions. The output data
Applpqogrmm==lg 2 Jp om0 dg)
of (n-m)th stage are stored in
PE(iO.il,—-—,im_1 JO.JI.———.Jm_I).

To continue this process,
nication will be needed.

interprocessor commu-

(3) Bit reverse data fransfers
The result of the bit reverse data transfer
will be that the data

An—m(in-l"_"‘lo ; Jn—l'__"JUJ
are stored in) A) ,
PEUL, i =i : Jn—l’Jn—z_"Jn—m .
The data A, (i, ,,-=-".1, Jpoqrmmme) of
the same i which are calcu-

el
Jated togetHer iR #urther?5Pages,
the same PE.

are stored in

{4) (n-m+])th to nth stage of FFT computations

FFT computation can be continued without
interprocessor communications until the final n
stages are complete.

S.Data Transfer

The data transfer from PE(i,J) to
consist of several transfers between two neigh-
bors, the number of which are proportional to
the distance between the source and destination
PE's. Since a 2D-toroidal array has additional
connections which have these distances to be
shorter, the less number of data transfers for
the bit reverse data transfers in a 2D-toroidal
array will be required than in a rectangular
array.

Data X(i:j) of different iT—m—I'_—’im A
n-m-1'""+Jp are stored in PE(n-1'"""lp-p*d
1’ »Jp-p’ 3nd are transferred to PE(IO. m-

1jo,---,3_). Therefore, 2" 2MyoN~2M. \,p)2
&atg havemfﬁe same source and the same destina-
tion PE. In addition to that.2 gach PE distri-
butes equal number of data (=N“/P“) to all PE's
including itself. In this sense, the bit reverse
data transfers are equivalent to the transfers
of transpose of matrices stored row-wise on
mesh-connected multipProcessor array.

PE(k,1)

s and

J n-

It

863

5.1 2D toroidal array

Optimum algorithm for this data transfer
problem on 2D toroidal array has already been
derived [2]. If v represents a unit transfer

time between any two neighbors, the bit reverse

data transfers on 2D toroidal array require the
transfer time
v 4)
T ————%T (#).
lowest!l 2JF
which is independent on algorithms.
The derived algorithm is optimum because its
transfer time achieves th lowest bound of the
transfer time Tlowestl'
5.2 Rectangular arrav
In case of one data transfer from PE(i:j)
to PE(k:1) along a shortest path in a rectangu-
lar array, the required number of data transfers
between two neighbors are determined by the
distance between PE's, that is, [i-k|+|3i-1\.
Therefore, the total number of data transfers
between two neighbor PE's is obtained by
Pol VB-L B-1 P,
Sa” = I 0 ZTNT/PYscli-kl+ -1
i=0 j=0 k=0 1=0
2n?2 5
= * (P~1) { .
P
The .lowest bound of the transfer time Tlowestz
is given as 2
= 6)
T = = % (P-1)%T X
lowest2 3p/P

[Theorem 1]

There exists no bit reverse data transfer
algorithm on a rectangular array which takes the
lowest bound of the transfer time Tlowest2'

In this paper, we propose an transfer algo-
rithm on a rectangular array which is optimum
among ones which perform row directional trans-
fers and column directional transfers one after
the other.

[f we denote by X(is,Jjs)(id, jd) the
data which will be transferred from the
processor PE(is, js)

/P2
source
to the destination processor

PE(id,Jjd). X(is,js)(id,jd) will be transferred
by row directional transfers from PE(is,js) to
PE(is,jd) and then move to PE(id,jd) by column

directional transfers. Therefore, in row dirgct-
ional transfers, each PE must transfer (N/P)<x/P
data to each other PE in the same row. After

that, each PE distributes the same amount of
data to each other PE in the same column. The
same algorithms can be applied to these two

directional transfers. Therefore, we only show
here an algorithm for row directional transfers.

In convenience, we define tEe clock CLK as the
transfer time in which (N/P)“%/P data will be
transferred fromza PE to its neighbor PE, that
is, 1 CLK = (N/P)“%/Pxt.

We will derive the lower bound T of
the transfer time for row directionalOYFﬁﬁgfers
which is independent on algorithms. PE(i,Jj) must
send X(is,js)(id,jd) for 0¢id¢/P-1 and

0<is<J<Jjd</P-1 to right PE(i.j+1) and also send
X(is, js)tid, jd) for Ogidgfﬁ-l and fﬁL12J52J>Jd20
to left PECi, j-1), PEC(i,J) must transfer
(J+1)%(IP-1-4)%((N/P)“%/P) data to PE(i,j+1) and

must transfer ({P-j)=j data to PE(i.j-1). The
total number of data transfers through PEC(i, J)
to either PE(i,j-1) or PE(i, j+1) age
((J+1)*(fﬁ;l—j)+(J$~j)*J)*{(N/P) *(E} 8)
The _maximum value is obtained by PE(i,j)

for J=J§/2-1 and {P/2+1 which is (P/2-
13%{(N/P)*%J/P} or (P/2-1) clock periods. This
gives the theoretical lower bound T of
row and column directional bit reégyggtsdata
transfers in a rsctangular array as
N°%(P-2)
Tlowests = ~5.5777" ?

CAlgorithm for row directional transfers]
(1) Set CLK=0.

(2) When CLK is even, PE(i,Jj) _and PE(i,j+1) for
0¢i¢VB~1, j=2k and 0<k<P/2-1 exchange
(N/P)“»/P data. Set HCLK=CLK/2 and increment

CLK by 1 and goto (3).

When CLK 1s a odd number. PE(i,Jj) _and
PE(i, J+1) for Ogégfﬁ—l, Jj=2k+1 and 0<k<JP/2-
2 exchange (N/P)“xJ/P data. Set HCLK = (CLK-
1)/2 and increment CLK by 1 and goto (3).

The data to be transferred to the right
direction from PE(i,Jj) to PE(i,j+1} are

Jsr=j-
Jdr=(fg—1)—u

where u and v
of 0<v{Jj which

X(isr,Jsr}(idr, jdr}
isr=i s
idr=0,1,~-~,{P-1,

for Jsr<=j<jdr<. P
positive integers
HCLK=(j+1)»xu+v,

1f indices don't satisfy Jsr<J<jdr<(P,
data transfers will not be performed.
The data to be transferred to the
direction from PE(i,j+1) to PE(i,]J) are

(8)
are
satisfy

such

left

X(isl,Jsl)tidl, jdb)
isl=i , Jsl=j+l+s
td1=0,1,--, {P-1, Jdl=r
. (7}
where r and s are positive integers which

satisfy HCLK=(/P-j-1)¥r+s and 0¢s¢fP-4-
2

1f indices don't satisfy Jdl<i+1<isl<(F,
such data transfer will not be performed.
(3) If CLK=P/2,

stop, otherwise go to (2).

PE(i.J) for even j will perform row right-
directional transfers during (JF-J—I)(J+1) clock
periods only when CLK's are even numbers and row

left-directional transfer during (JP-j)j clock
periods only when CLK's are odd numbers. While
PE(i,j) for odd j will perform row left-
directional transfers during (JP-j)j clock
periods only when CLK's are even numbers of and
row right-directional transfers during (JP-J-

1)(j+1) clock periods only when CLK's are odd
numbers. For either odd or even Jj, PE(i,j) needs
(JP-j-1) (j+1)+(JP-J)j clock periods. The row
directional data transfers are illustrated as in

Fig.5 in the case of /P=4.
CLK | PE(i,0) PE(i,1) PE(i:2) PE(i:3)
g i (0 3)=> <=1 0 (2 3)=> <=(3 0)
1 (1 3)=><=(2 0)
2 | (0 2)=> <=(2 0) (1 3)=> <=(3 1)
3 ! (0 3)=><=(3 &)
4 | (0 1)=><=(3 0) (0 3)=> <=(3 2)
5 | (1 2)=> <=(2 1)
6 |
7 1 (0 2)=> <=(3 1)
Note: (Js Jd) represents data X(i,js)(id, jd).

Arrows shows the direction of trasfer,
Fig.5 Row directional transfers ({P=4)

Fig.

854

[Theorem 2] The above algorithm of row right
directional transfers of the bit reverse data
transfer is optimum among the row-column type

transfer algorithms.

6. Comparjson

The performance comparison is carried out
between the conventional indirect 2D-FFT
hardware algorithm and the proposed direct 2D~

FFT hardware algorithm on both a
array and a rectangular array.

The time taken for proposed direct
hardware algorithms are as follows.
(Direct gethod ZD—toroidil array)

3N 2N

2D-toroidal
2D-FFT

2
N
T,,= =~ (109,N-2)Tm+ — (109,N)Ta+ — ¢ (10)
di 4P 2 P 2 e
(Direct yethod Rectangulgr array} 2

3N 2N 2N

T,,= — (1l09,N-2.Tm+ ——(log,N)Ta+ —(P-2)t

42 4p 2 p 2 Jbp
oan
where Tm and Ta are the time taken for a complex
multiplication and a complex addition on each PE
respectively, and t are the time taken for
transferring a datum from a PE to a PE.

To compare the computation time with one by
indirect 2D~-FFT, we assume to use the same
proposed algorithm for data transfers in case of
2D-FFT on a rectangular array.
(Indlrec§ method 2D—toroi§a1 array} 2

N 2N N
+— 1
2{P

T

Th -;—(1092N-2)Tm + —;—(1092N)Ta

(12},
(Indirec§ method Rectangalar array) 2
N 2N N

T,,= —(109,N-2)Tm+ —(109,N}Ta+ —=(P-2)1

127 2 P2 Jee

(13).
(1) Speedup by direct 2D-FFT
Without the loss by the communication time,

P PE's systems can run P times as fast as a
single PE. Therefore, speedup efficiency a,
defined as

(time taken in a single PE)

a:
(time taken in P PE's) x P

gives an efficiency for a multiprocessor system
with respect to speed. Fig.6 shows the speedup
efficiencies against the addition to transfer
operation time ratios for N=256 data, 2D~
toroidal array of P=16 PE’'s and several multi-
plication to addition operation time ratios. For
the practical addition to transfer operation
time ratios greater than 5, the multiplication
and addition operations are shown to be dominant
in 2D-FFT hardware algorithm.

Ql.(J. o
O e
L
S
£ o.s
aoor
0
-
¢
0.8t
a -1
=5
=10
=20
0.7
1 10 100
Ta/ T
6 Speedup efficiency in 2D toroidal array

for direct 2D-FFT (N=256. P=1R)

(2) Comparison to the conventional 2D-FFT

Fig.7 shows the computation time ratios
between the proposed direct method and the con-
ventional indirect method on 2D-toroidal array
for N=256 and P=256. In the practical case of
several Ta/Tm and Tm/t, the computation time
ratios less than 0.9 indicate the higher speed
of the proposed one than the conventional one.

= W/ Th= 1
P e =5
S —_— =10
© — =20
=LoN
s AN
© ~N
it ~
0.9, ~

g ~. ~
= ~. —
had ~ T e— — —

'\\ — —
f=1 ~_ ——
Q ‘\._\A e e A
S 0.8 TTte—e
<
3
=]
a
5
C 07

1 10 100
Ta/ 1

Fig.7

Computation time ratios between direct and
indirect 2D~FFT on 2D-toroidal array
methods (N=256, P=256)

(3) Comparison between 2D-toroidal and rectangu-

lar array

Bit reverse data transfer in a rectangular
array needs twice the transfer time as long as
in 2D-toroidal array. Since the required time
for multiplications and additions are the same
in both types, the computation time ratios bet-
ween two systems as shown in Fig.8 are
proportional to interprocessor communication
overhead which is determined by the addition to

transfer operation time ratio and the number of
PE's.
1.1

N

el

I

~

S

= 1.0t ey

5 e

e -

e - 7

Jig . .

[e e

g 0.9 s ~

= e

- -

5 e

. s

- 0.8}¢

% P= 4
< T = 16
2 —— = 64
3 — =266
© 0.7

i 10 100
Ta/ 1

Fig.8

Computation time ratios between 2D toroidal

and rectangular array for direct 2D-FFT
(N=256, Tm/Ta=5)

855

7. Concluding Remarks

A algorithm on multiprocessor systems is
considered for fast discrete Fourier transforma-
tion of two dimensional array. The results are
summarized as follows.

(1) Hardware algorithms to implement direct 2b-
FFT method on both 2D-toroidal and
rectangular array were derived. Although the
interprocessor communication time in-
crease, the number of multiplications «can
be reduced to 3/4 of ones in conventional
indirect 2D-FFT case.

(2) The bit reverse data transfer algorithm on
2D-toroidal array is optimum with respect to
the transfer time.

(3) The bit reverse data transfer algorithm on a

rectangular array was linvestigated. An
derived algorithm is shown to be optimum
among algorithms which consist of row and

column directional transfers. However, the
further investigation on general optimum
transfer algorithm will be needed.

References

and Tukey.,d.W.:
for the Machine Calculation of
Fourier series”, Math. Compt.,
pp.297-301, April, 1965.

[21 Bhuyan.L.N. and Agrawal,D.P.:"Performance
Analysis of FFT Algorithms on Multiprocessor
Systems", IEEE Trans. Softw. Eng., Vol .SE-89,
No.4, pp.512-521, 1983.

[3] Nakano,H. and Tsuda,T.:"Optimizing Inter-
Processor Data Transfers in Transposions of
Matrices Stored Row-Wise on Mesh-Connected
Parallel Computers", Information Processing
society of Japan, Vol.27, No.3, March, 1986.

{4] Rivard G.:"Direct Fast Fourier Transform of

"An Algorithm
Complex
Vol.18,

[1] Cooley.Jd.W.

Bivariate Functions"”, IEEE Trans. ASSP,
Vol .ASSP-25, pp.250-252, 1977.)
[5]1 Blahut R.:"Fast Algorithms for Digital

Signal Processing“, Addison-Wesley, 1885.

Appendix

[Proof of Theorem 1]

First, we will count the number of data
transfers as possible as many through PE(0.0),
one of thezcorner PE's. PE(0,0) may transfer

(1) (N/P)“%(P-1) data for data transfers from
PE(D:9) to the other (P-1) PE’'s.

(2) (N/P)“»*(P-1) data for data transfers f{from
PE(O, J) to the other PE(i,0) where
1€ 1,4< JP -1.

(3) (N/P)“%(P-1) data for data transfers from
PE(i,0) to the other PE(D, j) where

1<1, 3¢{P-1.

PE(0,.0) need not transfer all the data of (2)
and (3), because there are alternative shortest
path which don't pass through PE(0,0). There-

fore, the tQtal number S of the data (1)-(3),
N
S = ——i—*(zfﬁ-l)*((ﬁ—l) (A1)
P

will be the maximum possible number of
transfers through PE(0,0).

data

The total number of data transfers Sa is
given in eq.(&). It is easy to show for P>4,

Sas/P > S.
This means that even our over-estimation of the
data transfers through PE(0,0) is 1less than
Sas’P. However, the bit reverse data transfers
need Sa transfer as a whole. Therefore there
must be at least a PE through which the number
of data greater than Sa/P will be transferred.
The maximum number of data transfers S' of 5>
Sas/P will determine the transfer time T. The
transfer time by any algorithm is proved to be
longer than the lower bound as

T=S't>Sa/Pxt=T .

lowest2 (Q.E.D)

[Proof of Theorem 2]

The algorithm stops when C5K=P/2 which
gives the transfer time (P/2)%(N“//P)t. This
value differs from the lowest bound Tlowest3 of
the bit reverse transfer algorithm. During the
clock period of P/2-1, there are no data trans-
fer in this algorithm. 1If we skip this clock
period, we can perform the row right-directional
transfers during (P/2-1) clock periods. There-
fore, the algorithm is proved to be the fastest
row-column transfer type algorithm.

Next, we will show the derived row-~direc-
tional transfer algorithm guarantees the arrival
of data before the same data should be sent.
Let's Tc(J) be a CLK value when A(is:js)(id:jd)
for Jjs<jd will be in PE(is:j) during the trans-
fers where Js<j<jd. Tc(J) are derived from equa-
tions as

Tc(1)=2({P-1-jd-js)+2(yP-jd)j for even j
Tc(J)=2(fP-1~3d-js)+2(JP-jd) i+l for odd J.
Since JP-jd>0, Tc(Jj) are monotone increasing
function of j. Furthermore it is easily proved
that Tc(iI<Tc(j+1)<Tc(j+2) for any Jj. That is to
say, data will arrive at PE(is,]J) before
PE(is,J) need the same data to transfer to its
neighbor PE.
(Q.E.D.)

856

