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ABSTRACT

The path of an industrial manipulator in a crow-
ded workspace generally consists of a set of
Cartesian straight line path connecting a set of

two adjacent points. To achieve the Cartesian
straight line path is, however, a nontrivial
task and an alternative approach is to place
enough intermediate points along a desired path

and linearly interpolate between these points in

the joint space. A method is developed that
determines the subtravelling- and the
transition-time such that the total travelling
time for this path is minimized subject to the
maximum joint wvelocities and accelerations con-

straint. The method is based on the application
of nonlinear programming technique, 1i.e., FTM (

Flexible Tolerance Method ). These results are
simulated on a digital computer using a six-
joint revolute manipulator to show their appli-
cations.
1. INTRODUCTION

An  industrial manipulator is a computer
controlled mechanical system that consists of a
series of links connec ted together at joints

driven by actuators and a hand which carries an
object. There are a number of different motions
which a manipulator can perform between any two
points (called starting and destination) in the
work space. The Cartesian straight line motion
(CSLM) ©between these two points ( if possible )

seems to have certain distinct advan tages

any other motions. To obtain such motion
however, a nontrivial task. A practical alterna-
tive is to approximate the Cartesian straight
line path with a sequence of nonstraight . line
segments. To study this problem, Taylor [8]
proposes an approximation method by placing
enough inte rmediate points along the straight
line path first. Subsquently, these successive
points are lineraly interpolated in the joint
space. In Taylor's method the positional and
orientational deviations (resuilted from these
linear inter polations) shall remain below some

aver
is,

specified deviation tole rances. In this paper
Taylor’'s method will not be described but it s
assumed that the intermediate poinis beiween a

starting point X, and a destination point Xy
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in the Cartesian space are already determined
using this method.

To perform linear interpolations it s
necessary to construct new joint-trajectories

between adjacent segments to avoid discontinuity

of  joint velocities between successive points.
Paul {6] and Taylor {8] propose a symmetric
transition, where quadratic polynomials with

constant accelerations are used at each transi-
tion. When these quadratic polynomial joint-
trajectories are constructed, appropriate deter-
mination of subtravelling- and transition-time
becomes a significant task from the optimal time
joint-trajectory planning point of view. In this
paper we are proposing a searching method that
determines the subtravelling- and transition-
time such that the total travelling time between
Xs 8nd X, subject to the maximum joint

velocities and accelerations, is minimized.

2. STATEMENT OF MINIMIZATION PROBLEM

Referring to Fig. 1, q°(€R™) and qN(ER™)
represent the joint coordinates of the manipuia-

tor having n joints at X, and X, in the
Cartesian space, respectively, and are obtained
through the inverse kinematic equation of the
manipulator. Also q('s (i=1,2,....N-1) are
the intermediate points determined by Taylor's
method. Having determined these intermediate
points, the problem of determining the subtrave-
Hing time ty (=1,2,..N) and transition
time 7, (i=1,2,....N+1) to minimize the
total travelling time (T) subject to the con-

straints can be briefly described as follows.
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Fig. l. Linear interpolation in the joint space



MINIMIZATIONN PROBLEM

Minimize: T = Xt , (1)
i=1

Subsect to:

t! > max (qu/wp for i=1,2,..N, and j=1,2,.n, (2]

@ 2 max {Aq}/tﬂ‘, o | Aq‘;’/t,ﬂ—AqJ’/t, | 727

Aqt;/tN'rNﬂ} for j = 1,2,..0 and {3)
7, £ min {t/K , t_/K} for i = 1,2, N+l (4)
Here qu - ‘q;~q1j_‘| , q; is the jth-joint

component of q’, w; and @, are the maximum
velocity and acceleration of the jth joint, and
K is a preselected scalar value to avoid the
excessive deviations of the trajectories from
the intermediate point during transition. It is
to be noted that each joint trajectory consists
of one linear polynomial during t,-(7;+7 )
and two different quadratic polynomials during
each transition times T, and Tien

respectively.

3.MINIMUM SUBTRAVELLING AND TRANSITION TIMES

The minimization of T subject to {2) to (4}
leads to the application of a constrained nonli-

near programming method. Most of these methods
are based on the gtrict restriction of search
points, i.e., converting every infeasible search

point wviolating the constraints into the feasib-
le one meeting the constiraints. This fact re-
sufts in a large computational time and slow
convergence for the desired optimal solution.
The Flexible Tolerance Methed [2] (FTM), s
selected to deal with this problem, since in
FTM, every infeasible search point is converted
into  the near-feasible point (which will be
defined later) that releases the above restric-
tion and therefore improves the computational
speed.

In order to apply FTM, we define the sum of
infeasibility function (SIF), which denotes the

degree of the constraint violation of a search
point Zrl; (indicating the mth-search point
at the kth-search point at the kth-search

stage), as follows:

N n

SIF(ZE) = [3viltpy-a)?) + Sv{l@-b)%)
t=1 1=t
N+1

D MR {CIEE AN E {5)
Here, =

- (% 8
ZE = [t et Tty e Tl 1, (6B)
3 = \m3x, {Aq;/coj} , {6c)

by, = max {Aq;/t;l‘"'rr:_l,,,., | Aq‘j”/tm_‘;,1
-Aq) o | /2rm_‘;ﬂ,...,Aq’j‘/tm‘fnrm_{;ﬂ}, (6d)
¢, = min {t;*\/K, t % /K}. (6e)

Also a tolerance function
stage, which is apositive
of (2N+2) search points, is

wk at the kth-search
nonincreasing function
defined as follows:

Wt e min (gt Uk 7)
+ +
e 3L @l - 20 N2, (8)
i=1 =t
2N+2
Zaniay = 1 z zh - ZR1 7 (N+D),
for j = 1,2,.,2N+1. (9)

Here U* denotes the average distance from Zlf
(i=1,2,...,2N+2) to  Zyf., Zp&, 15
the centroid of the (2N+1) search points exclud-
ing 2‘1‘ at the kth-search stage, Z’: is
the search point which has the largest value
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(TT) of the (2N+2) wvalues of T, and \bu
(<<1) is selected initially. Also 2§,
Zantay and zy are the ith
component of the corresponding 21", Z?_de

and 2% Thus the condition for 2% to be a
near-feasible point at the kth-search stage is
defined as follows.

NF(zXK) = (y* - SIF (Z5)} = 0. (10)

It is to be noted that FTM is fundamentall
based on the Flexible Polyhedron Method [5]
(FPM). At the initial stage of the FTM, a flexi-
ble polyhedron is constructed with the (2N+2)
search points or vertices (determined from (19)
by selecting an initial search point Z; and
substituting  ZX, Z, and Hy for
X7, X7 and H,, respectively). At each
search stage, the search point with the largest
T is replaced by one with a smaller T. Such

replacement constructs a new flexible polyhedron

for the next search. When it is impossible to
find a point with smaller T than before, then
(2N+1) search points are collapsed into one
single point with this T that is the final
solution to this minimization problem. During
the search, every infeasible search point is
converted into the corresponding near-feasible
point  through minimization of SIF by the FPM.
This procedure is detailed in the Appendix. The
gk reduces fast and finally zero out be-
cause of its definition of being a positive
nonincreasing function of the (2N+2) search
points.  This fact indicates the feasibility of
the final solution and convergence of the FTM.
The final solution represents the determination
of i (i = 1,2,...,N) and 7, (i =
1,2,...N+1) for the minimum travelling time
from X, to X, The above procedure is de-
tailed in the following algorithm.
Algorithm I
Step 1. Choose 5.,8,58;¢6,4% and 2. Set
k = 0. Obtain ZEX (m = 1,2,...2N+2) from
(19) by substituting 2K, Z, and Hy for
X7, X™ and H, respectively, and
compute TE ( the value of T at Z; )
for m = 1,2,...,2N+2.
Step 2. m=1. Compute NF(ZK). If NF(ZE) < 0,
then find another Z; by the FPM.
Repeat this step with m = m+l until m
= 2N+2.
Step 3. Find Z‘l‘, Z’;, T’l‘ and T:. Compute
Zoey by (9) and ¢ by (7) to (8
If y* < €, then stop. Otherwise
continue. Comment: Z% is the search
point which has the smallest wvalue
(T¥) of the (2N+2) values of T.
Step 4. Reflect Z‘l‘ through 22N"+3 as
follows.
K k k k
Zaneg = Zne3 * 8(Zay0572Z)) (1Y)
where &/(>1) 1is the reflection
coefficient. If NE‘[ZZNkM) < 0,

then find another ZZNI‘“1 hy the FPM.
If Tsz“, Tl;, then go to Step 5.
If Tty > Tr for all i = k, then
go to Step 6. Otherwise, set le‘

Zoes and go to Step 2 with k=k+l.

<



Step 5. Expand the vector (ZZNk+q

k
Zai+a)
as follows.

Zones = Zaey * 82(Zonvs — Zaguad (12)

where &, ?>1) is the expansion

coefficient. I1f NF(ZyKs)<O,

then find another ZZNk+5 by the FPM.
k k k k

Set Zy = Z 5, H Toyis < T

then set 2Z; = zznkﬁ' Go to Step 2

with k=k+1.

Step 6. If Tyk,
ZZN“M. Contract
2z k*a) as follows.

k
Zagvs = ZaNe3*83(Z1 2oy 3), (13)
where 0 < §;5 < is the contraction
coefficient. If NF(Zprg) < 0, then
find  another ZnM. by the FPM.
If Tz»hs > T‘i‘ , then go to

Step 7. Otherwise,‘ set 211‘ = Zsz,,s
and go to Step 2 with k=k+l.

< T} , then set z¢ -
the vector (Z'l‘ -

Step 7. Reduce all the ZE as follows.

zt = zZFeo.s(2E-Z8),
m = 1,2,.,2N+2 .
Go to Step 2 with k=k+|{.

for
(14)

4. SIMULATION RESULTS

The proposed scheme that determines the sub-

travelliing (t;) and transition (7,) times
for minimizing the total travelling time ( T
) is simulated using a six-joint revolute mani-
Bulator such as PUMA 560 (Unima tion Inc.,
.5.A) mechanical manipulator. In order to dete-
rmine the intermediate points by Taylor's met-
hod, the starting points X, , the destination
point X, , maximum positio nal (ep) and
orientational (eg) deviation tolerances are
chosen as follows.
1004
010686
X. =
s 001 4 ’
. 0001
-1 0 0 14
1 1
0 == -—= 18
Nz A3
Xg = . (15)
Nz 2
.0 0 © 1
€p = 0.02 inch, €g = 0.02 rad. (16}
Table | shows the intermediate points (in the
joint space) determined by the kinematic equa-
tion of PUMA 560 manipulator and the Taylor's
algorithm. Table 2 shows the maximum Joint
velocities and accelerations which we  select.
Here we choose K (a preselected parameter for

around the
search paint

small deviations of the trajectory
intermediate point) and the initial
in second as follows.

K = 4, (17)
z,~{2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 0.5,

0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.51 . (18}
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[Joint_1ljoint 2ljoint 3ijoint 4[Joint Si{Joint &
@ | -028 ] -069 ] 124 | 002 ]| -055| 0.28
q' -0.05 | -0.42 1.13 0.07 | -0.71 | -0.01
q° 0.09 0.26 1.04 0.13 | -0.79 | -0.19
q° 0.26 | -0.02 0.86 0.24 | -0.91 | -0.41
q+ 0.36 0.18 0.69 0.33 | -0.93 | -0.56
q 043 [ 037 ] ol 0.41 | -1.08 | -0.66
q° 0.51 0.77 0.12 0.53 | -1.26 | -0.76
q’ 0.54 018 | 0143 ] 0.95 | -0.74 | -1.46
¢ 0.56 0.01 0.24 | 0.83 ] -0.94 | -1.30

Table 1. Selection of intermediate points.

[Joint _1lJoint 2Joint 3lJoint 41Joint 51Joint 6
w | 1.2 | 09 | 1.0 | 08 | 1.0 | 09
©| 8o | 75 | 82 | 44 | 62 | 57

Table 2. Maximum joint velocities (rad/sec)
and accelerations (rad/sec?)

With these numerical values, the FTM has
been rtun on the VAX 8300 computer system. The
final solution to our minimization problem is
tabulated in Table 3. As is seen from this
table, the total travelling time ( T )} between
X and X4 is reduced from the injtial
choice of 12d4sec to 4.1386sec. It is 1o Ybe
noted that the final sclution may be a local
minimum  value satisfying the nonlinear con

straints. The convergence speed of the FTM ge-
nerally depends on the selection of 3§,
5, and &3 and W of (19) in Appendix, but
these have little effect on the final solution.

2 A

1 1 0.2167 | 0.4687
2 | 0.0535 | 0.2538
3 | 0.0621 | _0.3670
4 | 0.0876 | 0.8748
S | 6.0743 1 0.3373
6 { 0.0813 | 0.3648
7 | 0.0910 | 0.9675
8 1 01163 1 0.5047
9 103154 |

Table 3. The minimum subtiravelling and

transition times.

5. CONCLUSIONS

When a Cartesian straight line path is appro-
ximated by linear interpolations in the  joint
space, determination of every subtravelling-
and transition time for minimizing the total
travelling time beiween any two points is very
important for high speed performance of a mec-
hanical manipulator. To address this issue an
optimal time  joint-trajectory planning is
proposed that yields the minimum total trave-
lling time between two points. This optimal
time joint-trajectory planning is very effect-
ive in the case where the intermediate paints
are closely located. The proposed scheme needs
relatively large computational time. But this



computational time is not critical since the
irajectory planning is performed off -line.
These results are applied to a six-joint revo-

lute mechanical manipulator by computer
simula tions to demonstirated their applica-
tions.

APPENDIX

The flexible polyhedron method {FPM) has been
developed by Nelder and Mead [5]. The proce-
dure of finding a near-feasible point is ex-
plained in the following.

Step L. Determine §;, 8, 83 € and W.

Set m-0. Replace X* € R™Y

with the infeasible search point Z:‘.
Obtain the initial (2N+2) vertices
as follows.

XP o= X" o+ H
for i=1, 2, ..., 2N+2,

(19a)
Ohyh,...hy
Oh,h,...h;
H=1 .00 ' (190)
Ohghy i h;
(N2N+ 2N+ )W
hy = ——————, 19
! N3(2N+1) (19¢)
_ NENFT-0W (19d)

27 NZ(2N+1)

Here X™ is the origin vertex, H
is the ith-cofumn wvector of H é
RIN+UX(N+2} and W is a
prespecified initial distance betw-
een two wvertices. Comment: m
denotes the number of search point.

Step 2. Find X7 corresponding to the

targest SIF and X, correspond-
ing to the smallest SIF. Compute the
centrold Xoy.q 85 follows.

AN+2
Xoniay = (lz_l Xiy - Xj)/2N+1

for § = 1,2,.2N+1 . (20)

Step 3. If NF(XT) 20, then set ZX = XT and
stop. Otherwise, reflect X} through
the X,y @s follows.

Xonra = Xonea * 80nia - X3 (2D
where §; (=0} is the reflection
coefficient.

Step 4. If SIF(Xph4) < SIF(XT), then go
to Step 5. If SIF(Xyh4) > SIF(XD)
for all {#1, then go to go to
Step 6. Otherwise, set X7=Xyii4
and go tc Step 2 with m=m+l.

Step 5. Expand the vector (Xogaq-Xanea) as

follows.

X21:n+3)'
(22}

m m m _
Xonas = Xonea * B2 (Konda

where &, ( > 1) is the expansion
coeffictent. 1f SIF(Xpy,g) < SIF(X3),
then set X7=X,\, . Otherwise, set
X3 =Xpieq 00 to Step 2 with m=m+l.

Step 6. 1If SIF(Xph4) < SIF(XT), then set
™= X,h, Contract the vector
(XT-Xh3) as follows.
Xoneg = Xanea * 83(XT-Xonia) (23)
where 0 < &3 < 1 is the contraction
coefficient. 1f SIF(Xygl > SIF (X7,
then go to Step '7;ZN therwise, set
XT = Xufie and go to Step 2 with
m=m+1.

Step 7. Reduce all the X7 as follows.
X% = XT+0.5(XT - X3)
for i = 1,2,..,2N+2. (24)
Go to Step 2 with m=m+1.
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