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Abstract

In this paper we formulate and solve a generalized H* con-
trol problem. The conventional formulation of H*™ prob-
lem has some constraints in application, e.g. it can not
deal with the servo problem. This is due to the super-
fluous requirement of internal stability of the augmented
system. In this paper, we alleviate the stability of the
augmented system to admit pole-zero cancellation on the
imaginary axis outside the feedback loop of G2; and K.
After such generalization, the servo problem is naturally
incorporated into the H™ synthsis.

Notation

Let XX, X% X1 denote a left inverse, a right inverse and
an annihilator of matrix X. C°®, C—, C+, €~ and C* de-
note the imaginary axis, the open left half plane, the open
right half plane, the closed left half plane and the closed
right half plane respectively. p(U) is the spectral radius
of U, A[U] denotes the spectrum of U or a member of the
spectrum, &(U) denotes the maximal singular value of U.
RH;, is the set of stable real rational proper matrices of
dimension mxr, BH,,, is a subset RH,, with £~ norm
less than 1. m.uc.(A, B) denotes the maximal uncontrol-
lable subspace of (A4, B) in €™, m.ue.(C, A) denotes the
maximal unobservable subspace of (C, 4) in C”.

HM([® V], Q)
=[01Q+ 612 WV[On@+0xn V!

mxr

n
¥
DHM ,
([ - ] Q)
}_l }
where ©;;, ¥;; is the (i, j)-block of © and ¥, V =
W VT, W(s) =Wy Wi

Jm,r = diag[lm) Ir]

¥+ Q¥
W,

Ui+ Q¥
w,

G™(s) := GT(~3)

AlB
C|D

=[A, B,C, D]:= D +C(sI - A)™'B
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1 Introduction

The H* control theory, as a unified frequency domain syn-
thesis methodology and for its close relation with robust
control problems, has been studied vigorously and widely.
The elegant two-Riccati equation state space solution has
been established in recent years [3, 1, 6, 4, 9]. In all these
papers, the H™ control problem is formulated as the prob-
lem of finding a controller K'(s) such that the feedback sys-
tem of Fig. 1is internally stable and ||®|]o, < 1 (or < 1)
where ®(s) is the closed loop transfer function matrix

P = G+ G12I((I - G22I()—1G21 B

} |

(3)

Gn
Gn

Gr
GZZ

(4)

|

Fig.1 Feedback system configuration

However, such formulation of H* control problem is re-
strictive in application, e.g. the servo problem can not
be solved within this formulation. We observe that the
constraint arises from the requirement of internal stability
of the whole system of Fig. 1. We note that the control
system of Fig. 1 is an abstracted system that embraces
weighting functions. In Fig. 1, G, corresponds to the
real plant and the feedback loop of Gy, K corresponds
to the real feedback system, while other parts are related
to weighting functions. What is really necessary is the
internal stability of the feedback loop of G,; and K that
requires the stability of the four transfer functions from
Uy, vz to y, u. However, the internal stability of the whole
system of Fig. 1 requires the stability of the nine trans-
fer functions from w, vy, v; to z, y, u which is obviously
superfluous.

Now let us clarify to what extent should we generalize
the problem. Firstly, when weighting functions have C*
poles, there arise two kind of problems: one is to cancel the
C* poles of weighting functions with the zeros of the real
feedback system and solve an H™ optimization problem;
another is to leave those poles intact and to minimize the



L norm of the closed loop system. The first problem cor-
responds to embedding those C* modes into the poles (or
zeros) of the controller, which is of little sense for control
engineering. The second problem can be converted into
a problem with stable weighting functions via multiplica-
tion of snitable unitary matrices. From these arguments,
it is clear that the choice of weighting functions with C*
poles offers no advantage. So we need only extend the
formulation to admit closed loop poles on the imaginary
axis. Secondly, we note poles of ®(s) on the imaginary
axis must be hidden modes, otherwise it is impossible for
®(s) to have bounded £ norm.

Let the plant G in Fig. 1 be given by a minimal realiza-

tion
n T P
A|B A| B B
o= | AE] - [alm 2] ()
C|D Ci1| Dy D2 m
Cz | Dy D q

Here we emphasize that this realization is minimal, it con-
cerns with the existence of Riccati equations. Throughout
this paper, it is implicitly assumed that the real plant has
no unstable hidden maodes.

Based on the preceding observations, we generalize H™
control problem as follows.

Definition 1 The generalized H™ control problem is to
find the necessary and sufficient condition for the existence
of a controller satisfying

C1: All closed loop poles of the system of Fig. 1 lie in C™,
C2: The feedback loop of Gy and K is internaily stable,

C3: {unstable closed loop pole}={uncontrollable mode of
(4, By) and unobservable mode of (Cy, A) on C°},
C4: §(s) € BHZ,,.
Now let us have a further look into this definition. C1 and
C4 means that all unstable closed loop poles are hidden
modes. An uncontrollable mode of (4, B,) and unobserv-
able mode of (C;, A) may be a pole of Gy1, Gy; and Gy,
but not Ga;. So C3 implies that only unstable pole-zero
cancellation outside the feedback loop of G, and K is
allowed, which happens between the poles of Gy, Gya.
G {weighting functions) and the zeros of the feedback
loop of Ga; and K. Therefore C4 implies the stability
of (I — G2 K)™', which in turn iinplies the internal stabil-
ity of the feedback loop of Gy, and K. That is, C1, C3
and C4 actually implies C2. Here C2 is stated merely for
emphasis.
We make the following assumptions on G(s).

Al: (A, By, () is controllable and observable in C*,

A2: D12 = [0 IP]T, D2l = [0 Iq]‘
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A3: 'y, and G5 do not have any transmission zeros
on C” and for all w satisfying |jwl — 4] = 0,
rank [jwl — A, By} =n and rank[jul — AT, C]]=

n, swl—A B | gel=A B o6 of fullrank.
Cy D2 Ca Dy

Note subject to A3, uncontrollable modes of {A, B,)
and unobservable modes of (Cy, A) on C° are the only
CO invariant zeros of Gi, and Gy;. The implication of
Al is that weighting functions are permitted to have C°
poles, and C* poles that are both controllable from B, and
observable from C;. The first part of A3 generically implies
that weighting functions do not have transmission zeros on
C® which is usually satisfied; meanwhile the second part
implies that if Gy; has a pole on CP, it also has to be a
pole of Gy1, G132 and G3;. When A3 does not hold:we face
the so-called singular problems which we do not consider
here.

Compared with the assumptions made in the standard
‘H™ problem, the controllability and the observability on
CY is not required and assumptions on the invariant zeros
of G13 and Gy are relaxed to permit unstable cancellations
outside the feedback loop.

Encouragement for such generalization of H* problems
came from the work of Zhang, et al.[11]. They showed that
for the mixed-sensitivity problem, an H™ servosystem can
be constructed by inserting the reference signal generator
into the weighting function of the sensitivity function.

It will be shown the solvability condition and the struc-
ture of the generalized H™ control system are analogous
to those of the standard H™ problem except that we need
different kind of solution of Riccati equation which we call
the quasi-stabilizing solution.

We disclose that in a generalized H> control system all
invariant zeros of Gy; and Gy in C” are hidden modes
of the whole closed loop system. Thus the time response
of an H* control system can be improved by adjusting
weighting functions and control criteria to avoid undesired
cancellation.

2 Riccati equation

Let us consider the following differential game type Riccati
cquation.

(A-=BR'ST)X + X(A - BR'sTYT

-X(Q@~-SR'ST)X + BR'BT =9, (DGR)

A=A-BR'ST - X(Q- SR™5T). (6)

Definition 2 When (DGR) has a symmetric solution X
such that the spectrum of A lies in C”, A[4] € CO s
uncontrollable from X and m.uc.(A, X) = m.uc.(A, B),
X 15 called a quasi-stabilizing solution of (DGR).

We can prove that the quasi-stabilizing solution of (DGR)
is unique. When (A, B) has uncontrollable modes on C°,
the Hamiltonian matrix associated with (DGR) has eigen-
values on C% In this case, it is technically difficult to
calculate X directly. However, the following lemma offers
us a way of calculating the solution of (DGR).



Lemma 1 Make the following decompositions

r-iar= | A A g | B
0 Ax
70T = Qu Q2 TTS = 51
QL Q» |’ Sz

in which Azy 1s the mazimal uncontrollable mode of A
in C”. Then, (DGR) has a positive semidefinite quasi-
stabilizing solution iff

(Au ~ BIRT'ST) X + Xu(An - BiRT'ST)T

~X11(Qu — $:R'SN)Xyy + BBRT'BT =0 (7)
has a symmetric positive definite solution such that
An =Ap — BIRTS] ~ X1u(Qu — S1R7'SY)
is stable. The solution for (DGR) is given by
X = Tdiag[Xy,, O0]TT. (8)

3 Generalized H*™ control

Partition Dy in the following way

r—q q
D = | Dun Dune m-—p
Dun Dnze 4
Dyypy | m—p r—4 9
= =[Diia Due).
Die2 | p

Owing to Assumption 2, when maz {a(Dy1,1), c"f(Dle)} <
1, we can define

D1Lz = [D11r2D1T1r1(] ‘DllrlDlTlrl)_1 I]

Dy, =[(I - Dy, DY,,)7 0]
DE = [DfiuDna(l — D]y Dua)™ I)°
D =[(I- D] Dna)™? 0of
A, =A-B,DLEC,, A,=A-BDEC, (9)
S, =-BDL(DLYT, S,=-CID, Dy
Q. =Bszz(HZsz)T
~(B1 — B, D, D11)(B1 — ByD}; Dyy)”
Q, = (DJC)TDiC,
—(C1 = DD C)T(Cy — Dy DECy).
Since
A, —sl 0 I -B,Df
DLEC1 0 |=|0 Db .
0 I 0 Db
A-sI B, I 0 (10)
| C1 D -bhey I
Ay—sl BiD¥ o0 I -BD§
[ 0 0o 1 ] “lo x ] *
[ A-s1 B | I 0 o an
Cs Do | ~DfC, D% D&

the invariant zeros of Gi2 and Gj; are exactly the un-
observable modes of (D:5C;, A,) and the uncontrollable
modes of (A,, HlDﬁ’]).
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3.1
Obviously

Gyl — @2~)(G,)™ = GRll — GuGh(G)™.

Necessary condition

So, when the generalized H* problem has a solution, we
have

To(s) = Gl — GuGR(GE)™ >0 Vs = jw.

Let w — oo, we obtain §(D1,1) < 1. Simple manipulation

According to the spectral factorization theory of [7], the

yields
Sa
I

Q.

La(s) = [DLC1(sI - A7 1) { s

(=l — ATY (DT
I

following Riccati equation
X (Aa — SaDECY) + (Ag — SuDLCHTX
—X(Q. — SuSTYX + (DLCHTDEC, =0 (Ricl)
has a symmetric positive semidefinite solution such that
MA)c €™, 4, = 4, — S, DEC, — (Q. — S.ST)X
/\[;1,,] € CO is unobservable from X and m.uo.(X , ;i,,) =
m.uo.(DLCy, A,).

Similarly, from

Ii(s) =(G3)"U - G1GnlGa

o ql @ s
=[(BDg) (=T - ATy 1| 7
st I

— A -lB 1
. (sl b)I 1D2s >0 Vs=jw

we have &(D7,,;) < 1 and that the following Riccati equa-
tion has a symmetric positive semidefinite solution
(45 = BiD3 )Y + Y (4, — BiD, S])T
—-Y(Qo— SS7)Y + BiDA(BiDR)T =0 (Ric2)

such that
MNA) € €7, A4y = Ay~ BiD§iST - Y(Qy — 5ST),

A[4,] € C0 is uncontrollable from Y and m.uc.(4,, Y) =
m.uc(Ay, By Dy;).

Remark 1 We remark that when we solve (Ric 1) and
(Ric 2) using the method of Lemma 1, the dimensions of
the deflated Riccati equations are equivalent to (n — no. of
C” invariant zeros of G13) and (n — no. of € invariant
zeros of Ga1) respectively.

Further, as [8] we can prove based on the stability of

®(s) that
X Xy , [ ]
P

YX Y

X o
0 Y

X o0
0 Y

(12)




in which P > 0. So P > 0 and Ker P = Ker [’: 3]

Therefore, p(XY) < 1 follows from these two conditions
(8]- .
So far we have obtained the following necessary condi-
tion.

Proposition 1 The generalized H™ control problem has
a solution only if

1. maz{3(Dyn), 5(Dh4)} < 1,

2. (Ric 1} and (Ric 2) have positive semidefinite quasi-
stabilizing solutions X, Y,

3 p(XY)<1.

Owing to (10) all C™ invariant zeros of G, and the
mirror image of its C* invariant zeros belong to A[4,]
{7]. Further, the two conditions that A[4,] € C? is unob-
servable from X and m.uo.(X, 4,) = muo(DLCy, A,)
imply that all C° eigenvalues of A, are exactly the C?
invariant zeros of Gy,, i.e. the C® uncontrollable modes
of (A, By) due to A3. For the same reason, A[4,] con-
tains all C~ invariant zeros of G, and the mirror image
of its C* invariant zeros and all A[4,] € C° are the C°
unobservable modes of (C,, A).

3.2 Sufficient Condition
we give a brief proof that the condition of Proposition 1 is
also sufficient (see [7] for details).

1) Under the condition of Proposition 1, both T,(jw)
and T',(jw) are positive definite so that they can be spec-
trally factorized. We find the normalized spectral factors
satisfying

I=Gy() = Gu(s)Gr(s))(Gials))™ (13)
I'=(Gu(s)™U ~ Gu(s)~Gu(s)]G3(s) (1)

by dividing both sides of T,, T}, with obtained spectral
factors.

2) Rewrite the closed loop transfer function matrix ®(s)
as its homographic transformation form[5]

&(s) = HM([G, V], K)= DIIM([ ﬁj] , K)(15)

in which
Gals) = Gz - GuGEG»n GuGH
—GﬁGzz Gﬁ
GE GLG
Gyls) = 2 e (16)
-GGy Ga — GuGRGh
G116
V=] U7 | W) =[G GhGw.
a1

3) The fact that (W~ V]is (Jm,r s Jm—pr—g)-unitary is
easily verified using the definition of W and V, (13) and
(14). Furthermore, we prove based on the characterization

1542

of J-lossless matrix[2] and Riccati equations that [W~ V]
i$ (Jmyr s Jm—pr—q)-lossless.

4) Construct based on the characterization of J-lossless
matrix a matrix ©(s) such that [0 W~ V]is (Jp,, Jpq®
Jim—p,r—q)-lossless.

5) According to [5], the feedback system of Fig. 1 is
equivalent to that of Fig. 2 in which G, = ©II"! + VR

and

II=J,,GJm,©, I'= J5.q@ I Ga (17)
Z -~ Y
[Ga V]
W —
Yo

Fig. 2 Chain scattering system

Define g, = yo + R[uT yT)7, then the system of Fig. 3
is equivalent to that of Fig. 2 in the sense that the in-
put/output relation of (z, y, w, u) is identical [5].

u
I
¥o
Fig. 3 Equivalent chain scattering system

2z -]

[e11-! V]

w

Straightforward calculation yields

(s) = [4, B, Cr, D,] (18)

I-!(s) = [y, By, Cr—, Dp_] (19)

6) Choose a controller as

K=HM(,S) , SeBH

pXq?

(20)

then according to the multiplicative property of chain scat-
tering system [5] and owing to the (J,n, , Jpq® —1)- loss-
lessness of [© V], the closed loop transfer function be-
comes [8]

® = HM([eU™' V], HM(I, 5))
=HM(e V], S)eBH>

mxr *

The cancellation of II(s) in the feedback loop implies all
uncontrollable modes of (4, B;) and unobservable modes
of (Cz, A) on C° are cancelled in the system of Fig. 1 as
they are exactly the C® eigenvalues of A, and A, respec-
tively. There is no more unstable cancellation since the
spectra of A, and A, are both in &~ Further, there is
no unstable cancellation in H M([© V], S) owing to the
property of J-lossless chain scattering system[8]. There-
fore we have proved that the system of Fig. 1 do not have
C* poles and the uncontrollable modes of (4, B;) and un-
observable modes of (Cz, A) on CO are the only unstable
poles of the closed loop system that are hidden modes as
well. So C1, C3, C4 are satisfied. Then C2 is also satisfied.
Therefore, (20) is an H* controller.

Summarizing these results, We obtain the necessary and
sufficient condition for the generalized H* control.



Theorem 1 The generalized H™ control problem has a
solution iff

1. maz{&[Dnn), 6[DL,4]} < 1,

2. (Ric 1) and (Ric 2) have positive semidefinite quasi-
stabilizing solutions X, Y,

3 p(XY)<1.

Compared with the solvability condition of the standard
‘H™ problem, the difference lies in the requirement for the
solution of Riccati equations.

3.3 Characterization of H® controllers
In the previous subsection, we have shown that each A'(s)
given by (20) is an H™ controller for the generalized H>
problem. Here we prove the converse that every H* con-
troller is expressed by (20).

~—] —

[© V] oYK

Fig. 4

When the generalized H™ problem has a solution A'(s),
the whole system can be described as Fig. 4. Absorbing
II-'(s) into K(s) and defining

S(s) = HM(II™' | K),

then the whole system turns into Fig. 5. All uncontrollable
modes of (A4, B,) and unobservable modes of (C,, A) on
C® which are contained in the poles and zeros of II71(s)
must have been cancelled in this process. So there should
be no further unstable cancellation in the system of Fig. 5.
Therefore S(s) € BH,, due to &(s) € BrY,, and the
(s s Jpg ® —I.—y)-losslessness of [© V][8]. Hence the
H* controller R'(s) is of the form of

K(s)= HAM(I, S), S(s) € BH®

PXq

according to the property of HM transformation(5).

T3

Fig. 5

As Glover-Doyle[3] we define the following notations.

D
Dy =[Dy D] D= " (21)
Dy
I, 0 N I, 0
R=D{D; - } R=D,D% - } (22)
0 0 0 0
Fnn| r—gq
F=1 Fp g =-RYDIC,+ BTX) (23)
P b4

m-—p p q

-1
= =-(BiDT+YCTHR™ (24)
[ B Ho H | '

H
Theorem 2 All H* controllers are given by
K(s)=HM(I1,S) , S(s)e€ BH (25)

PXq

A+BF| By Bu
1 1(s) = Cn Dyii Dep2
Crz | Denn Dyp

where
By =Z(By+ Hiz2)A
B, = —Z(BU + HipU + Hy)AS!
Ch =5 (26)
Cr2 Fi2+ DpFy + Cy
Z =({I-YX).

il

When |I — DnpU| # 0, the H™ controllers are equiv-
alently expressed in the linear fractional transformation
form below.

I((S) = R’11+R’125(1—R’225)—1R21 s Se BHDO(Q’T)

i(s) = [K“ 1_(”] = (28)
K»n Kx
in which

Ay =A+ BF = Biy(Fiu + D F + C))
By = —Z(ByU + Hy2U + Hy)(I — DpU)}
By =Z(B2+ Hi3)Ay — By Dy (29)
Co =F—-UBD;'Ce
Crz = =0 — DU (Fiz+ Dy Fy + Cy)

Dy =-U(I - DpU)™!

Dy, =(I+U(I - DU) ' Dy)A,
Dy = Ay(I — DpU)™*

Dimy = —=As(I — DnU) ' Dy .

For the well-posedness of the H* controller, S(oco) must
satisfy
|[I — Dya(U — A1S(c0)Ag)| # 0. (30)

Under the same condition, the H* feedback system is well-
posed as well.

(Proof) (26) follows from direct calculation. (29) is derived
from {2}
R(s) = lel_Il'E Iy, - ijni'z]nzl
jiey —H5 Iy
The well-posedness condition of the H* controller is

(M2 S+T2;)(00)| # 0 which is equivalent to (30). Further
since

[ — Dy K(co)][I — Dpn(U — A;,5(c0) )] = 1,
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the generalized H™ system is well-posed as well. n

When D, # 0, there is the possibility of |[I — DU =
0. In this case the central controller (S(s)=0) does not
exist and the H* controllers can not be expressed in the
linear fractional transformation form. However, even in
such case it is possible that the H™ controller does exist for
some non-zero S(s). This is a merit of the homographical
transformation representation of K'(s).

The following theorem shows a pole-zero cancellation

phenomenon similar to the standard H> systems [10, 8].

Theorem 3 When there does not exist cancellation inside
the H* controller given in (20), all invariant zeros of Ga
and Ga1 in C are hidden modes of the generalized H™
control system.

(Proof) From the characterization of the H* controllers,
we see that in the generalized H> control system there
occurs inevitablly the cancellation of IT(s) and (s} if
there is not cancellation of II{s) and S(s) inside the con-
troller. Since the ipvariant zeros of Gy, and Gy in €7
are the eigenvalues of A, and A, they must be cancelled
in the chain scattering system. As a hidden mode of a
chain scattering matrix is the same as that of the associ-
ated scattering matrix[2], the cancellation of II(s) in the
chain scattering system then implies that all C” invariant
zeros of G and G, are hidden modes of the generalized
|

It is obvious that to make the £ norm of a transfer

‘H* control system.

function smaller, its poles have to be placed farther away
from the imaginary axis. H™ control attenuates the H™
norm of the closed loop transfer function, therefore ideally
‘H™ control would offer fast transient response if there were
no hidden modes in the closed loop system. Nevertheless,
it is often complained that H™ control usually yields bad
time response. This is due to the pole-zero cancellation in
the H*> control system. Theorem 3 tells us what the hid-
den modes are, it thus provides a guideline for the selection
of weighting functions and control criteria, i.e. to prevent
the appearance of slow modes in the invariant zeros of G2
and G-

4 Conclusion

In this paper, we have formulated and solved a generalized
‘H™ control problem. In the generalized H™ problem, the
internal stability of the whole system of Fig. 1 is alleviated
to allow pole-zero cancellation on the imaginary axis out-
side the feedback loop, thus admit unstable poles of the
whole system. This generalization of H* control problem
deletes the superfluous internal stability condition of the
standard H* control, which enables the incorporation of
servosystem synthesis into H™ theory, thercfore enlarges
the application field for H™ theory and enhances the us-
ability of H*™ theory.
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