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Abstract

The feasibility of using an adaptive resonance network
(ART?2) with unsupervised learning capability for tool wear
detection in turning operations is investigated. Specifically,
acoustic emission (AE) and cutting force signals were mea-
sured during machining, the multichannel AR coefficients of
the two signals were calculated and then presented to the net-
work to make a decision on tool wear. If the presented fea-
tures are significantly different from previously learned pat-
terns associated with a fresh tool, the network will recognize
the difference and form a new category as worn tool. The
experimental results show that tool wear can be effectively
detected with or without minimum prior training using the
self-organization property of the ART2 network.

1

One important task of human operator in conventional machining
system is to monitor the machining process and to take a preventive
action if any undesirable machining condition would happen. Thus,
to achieve untended machining, the control system of the machine
tool should have the pattern recognition and decision making capa-
bilities which can be reinforced by learning as the empirical data
is accumulated. Also, to take full advantage of modern adaptive
controllers many different forms of feedback information from the
machine tool is neccessary. Therefore, it is very important to de-
velop and characterize sensor systems for machining processes (see
(1-5).

In machining operations, cutting tools are subject to an ex-
tremely harsh rubbing action both on the rake and flank faces close
to the tool tip. The rubbing actions between the cutting tool and
chip on the rake face of the tool and between the cutting tool and the
machined surface of the work on the flank face create very high stress
and temperature, resulting in tool wear. As the tool wears out, the
performance of the cutting operation deteriorate seriously so that in
time effective machining is impossible. Therefore, the cutting tool
has to be changed as it wears out.

However, tool life is very difficult to predict and has very
widely scattered distribution, because tool wear is very complex phe-
nomenon. Since it is a result of various interacting effects like tool
and workpiece material properties, cutting conditions, and other en-
vironmental effects, it is impossible to setup generally acceptable
tool change policies.

In [18] an architecture for an on-line tool wear monitoring sys-
tem which is based on an multilayered perceptron type neural net-
work for integrating information from multiple sensors was developed
and the performance of the system was experimentally evaluated.

Before actual application, neural networks have to be given the
expertise of human problem solving through a learning process. In
many cases, the objective of learning can be desribed as the problem
of gradually building up an associative mapping between input and
output patterns. This procedure of refining the internal structure of
the network for correct associative mapping is associative learning.
There are 2 different types of the associative learning depending on
how learning occurs. In supervised learning the associative mapping
can be built up into the learning system by presenting the system
with input/output pattern pairs. With a given input pattern, the
system computes an output pattern according to its current inter-
nal model. Then the computed output is compared with the target
output pattern provided by an external teacher, so that the internal
model can be adjusted in the direction of reducing the difference be-
tween the actual output and the taget output. Another class of asso-
ciative learning is unsupervised learning. An unsupervised learning
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system is presented only with input patterns. For each input pattern,
the system learns to respond to the input pattern so that the output
pattern is optimal in some sense. The performance criterion is mea-
sured by an evaluative feedback from the external environment of
the system. Since the feedback information in unsupervised learning
is only evaluative and not informative as a target output pattern in
supervised learning, unsupervised learning is usually more difficult
than most supervised learning problems.

To learn the necessary input/output mapping for tool wear
detection, the weights and thresholds of the multilayered perceptron
type network in [19] were adjusted according to the back propaga-
tion method which is a supervised learning technique during off-line
training.

In this study, the feasibility of using the ART2 network [20]
with unsupervised learning capability for tool wear detection in turn-
ing operations is investigated. Specifically, AE and cutting force sig-
nals were measured during machining, and the autoregressive (AR)
coeflicients of the two signals were calculated through a signal pro-
cessing block and then presented to the network to make a decision
on tool wear. If the presented features are significantly different from
previously learned patterns of fresh tool, the network will recognize
the patterns are different and form a new category as worn tool.

2 Adaptive Resonance Theory

Clustering techniques are methods of automatically partitioning in-
put data into several categories (clusters) according to the charac-
teristics of the data so that each input is assigned a unique label
cotresponding to a cluster in such a way that a certain measure is
optimized (see {10]-[14]). In this study, the adaptive resonance net-
work based on Grossberg’s adaptive resonance theory (ART2) [20]
used for clustering of sensor outputs in turning operations for detec-
tion of tool wear.

ART?2 network is an artificial neural network that can perform
clustering of input patterns based on how human senses are scanned
for patterns and categorized by mind into the objects of perception.

So far, multilayered perceptrons trained with the back propa-
gation algorithm have been most widely used, and have led to consid-
erable success in many applications (see [15)-[19]). However, the back
propagation technique lacks the self- organizing capability through
unsupervised learning. On the contrary, adaptive resonance archi-
tectures are neural networks with unsupervised learning capabilities
which self- organize stable recognition codes in real time in response
to arbitrary sequences of input patterns. Furthermore, the adaptive
resonance networks are more heavily based on the operating princi-
ples of biological neural networks than those using back propagation.
Adaptive resonance theory was proposed by Grossberg [20] to quan-
titatively explain how human senses are scanned for patterns and
then categorized by the mind into the objects of perception as an
extension of competitive learning.

Although competitive learning models proved effective for a
certain class of problems the learning becornes unstable in response
to a variety of input environments. The inherent instability of a
competitive learning system led to research on the design of a learn-
ing system that remains stable in response to irrelevent events while
maintaining plasticity (ability to encode knowledge for all time) in
response to significant new events. An effort to design an adaptive
pattern recognizer that could self-stabilize its learning in response to
arbitrary input environments led to the introduction of the adaptive
resonance theory by Grossberg. Grossberg showed that a certain
type of top-down learned feedback and matching mechanism could
significantly overcome the instability problem.

In the ART?2 network the output represents the category for



the input pattern determined by the network itself by generating a
clustering of the input data according to similarities between sam-
ples. The ART2 network consists of two sets of nodes. The first
set, F1 (feature representation field), is connected to input vector
and gives the short term memory (STM) activation vector which
is a modified form of the current input vector at its output. The
second set, F2 (category representation field), generates an output
activation vector giving the recalled category from long term mem-
ory (LTM) for the current input vector through the winner-takes-all
type competition. The ART2 network encodes new input patterns, in
part, by adaptively changing the bottom-up weights which connect
F1 to F2. Such a combination of adaptive filtering and competi-
tion is common to many models of adaptive clustering techniques.
‘What distinguishes the ART2 network is the feedback connections
(top-down weights) and the mechanism (orienting subsystem) that
resets the winning category in the case of mismatch between the
input vector and the recalled memory. In addition to the bottom-
up mechanism of a competitive learning system, an ART2 system
has a top-down mechanism for matching bottom-up input patterns
with top-down expectations; and for releasing orienting subsystem
in a mismatch situation. Using these mechanisms, an ART2 network
can generate recognition codes adaptively, and without a teacher, in
response to a series of environmental inputs. As learning goes on,
interactions between the inputs and the system generate new steady
states. The steady states are formed as the system discovers and
learns critical feature patterns that represent invariants of the set
of all experienced input patterns. These learned codes are stabi-
lized against noises contaminated irrelevant inputs. ART has been
used for data analysis in speech perception, word recognition, visual
perception and olfactory coding, and demonstrated its effectiveness.

Fig. 1 shows the detailed structure of the ART 2 network as
proposed by Grossberg. Initially, the nodes in F1 are activated by
the input feature vector. This pattern activates all of the nodes in
F2 simultaneously via bottom-up weights from F1 to F2. These ac-
tivations compete until F2 becomes active with a candidate category
with the strongest activation of a pattern stored in LTM. The STM
in F1 then receives the recalled LTM pattern via top-down weights
from F2 to F1. The expected activation vector is compared against
the vigilance threshold to determine closeness of fit by the orienta-
tion subsystemn. If the new category matches the input pattern, the
system resonates for some interval such that learning occurs and the
LTM pattern is reinforced by the new input pattern. If the recalled
pattern is not sufficiently close to the input pattern, a strong inhibit
signal is sent to F2 by the orientation subsystem. This suppresses
the previous winning category and another category is selected, and
tested until either an adequate match is found or a new category is
established.

The STM activation V; of the ith element at any node of the
first stage, F1 is based on the membrane equation:

d
TVi= (1)

The dimensionless parameter, ¢ is the ratio between the STM relax-
ation tirne and the LTM relaxation time which is 0 < ¢ € 1. For
B = C = 0, the equation for STM activation reduces to
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where J}t is the total excitory input to the ith element, and J; is

the total inhibitory input. According to the Grossberg’s design, the
STM activations, p;, ¢i, 4, 5, w; and z; in Fig. 2 can be written

poo= wt Y g(w)z (3)
J
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where || p ||, || v ||, and || w || denote the Ly-norm of vectors, p;, v;,

and w;, respectively, and where I; is the input vector to the network,
y; is the STM activation of the jth F2 node, and zj; is the top-down
weight from the jth node in F2 to the ith node in F1.
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The functioning of the feature representation field, F1 can
be summarized as normalizing the input pattern, suppressing noise
and renormalizing to find a modified form of the input pattern. In
order to suppress the noise, Grossberg and Carpenter suggested the
following squashing function:

ifz >0
ifz<@

x

s@={ ¢ ®)
where @ is a threshold level.

The primary functions of F2 are contrast enhancement of the
filtered input pattern from F1, and reset of active F2 node when
a pattern mismatch at F1 is large enough io activate the orienting
subsystem. Initially, F2 is inactive. As input patterns are presented
to F1, F2 is activated with an input signal from F1 via p; which is
an adapted form of the input pattern. Actually, the activations of
all categories in LTM are computed according to

Y = me;‘
i

The nodes at the category representation fields receive the inner
product of the bottom-up weight vector with the processed input
vector from the feature representation field. The winning node is
selected according to the winner-take-all type competition among
all the nodes in the category representation field as in competitive
learning. Then F2 makes a choice by passing the activation of the
maximally active node through a gated dipole threshold function
given by

(10)

d if y; = maz(y; | the jth F2 node has not
g(ys) = been reset on the current trial) (11)
0 otherwise

and inhibiting all other nodes. This signal is then passed back to F1
via the top-down weights, z;; modifying the F1 activity, p; as

ol

As mentioned previously, the major difference between the
ART? and the competitive learning is that the competitive learning
systems merely update the weight vector of the winning node regard-
ing the winning node as the representative category of the current
input pattern, while the ART 2 tests whether the winnng node suffi-
ciently matches the input pattern. How closely the STM pattern at
F1 matches an active LTM pattern is determined by the activaticn,
ri, which is given by

if F2 is inactive
if the Jth F2 node is active

u;

u; +dzyi (12)
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The sum of the square difference, r, will be 1 if the patterns match
perfectly, and will be less than 1 in proportion to the dissimilarlity
between STM and LTM patterns. The degree that patterns are al-
lowed to be dissimilar before resetting the network can be controlled
by adjusting the vigilance parameter that contrals activation of the
orienting subsystem. Lower vigilance tolerates larger mismatch at
F1, which causes coarser categories while higher vigilance imposes a
stricter matching criterion and lead to finer categories. The orienting
subsystemn will reset F2 if the following condition is satisfied:

—f 51 14
e 0
where p is the vigilance parameter. When this condition is not sat-
isfied, the network will begin to resonate such that learning takes
place and the LTM pattern is reinforced by the new input pattern.
On the other hand, if the condition is met, the reset causes the win-
ning node in F2 to be suppressed and then another pattern to be
recalled from F2 and presented to Fl.

When the network resonates the top-down and bottom-up
LTM weights are modified, respectively, by the following two dif-
ferential equations to encode the new information from the input
pattern:

5 (15)

250 = d(pi — 22i)

dt (16)

ziy = d(pi — zJ)



3 Discussion of Experimental Results

The experimental setup for the tool wear detection consists of a Tree
1000 lathe, an SAIC Delta Neurocomputer workstation, electronic
interface hardware for the communication between the Neurecomn-
puter and the lathe, and a multiple sensor systein composed of an
AE sensor, a force sensor, and a current sensor. A scrics of metal
cutting experiments was conducted on the Tree 1000 lathe, for eval-
uation of the tool wear detection system. In the experiments, 4 inch
diameter AISI 4340 cylindrical bars were machined with fresh and
worn Kennametal TPGF-322 K68 cutting tools. flie size of the wear
land on the frank face of the cutting tools used as worn tools was
about 0.04 in., and the machining conditions were varied from 0.005-
0.08 in. depth of cut, 0.01-0.07 in/rev feed rate, aud 250-350 ft/min
cutting speed.

During the machining process, the AE and the cutting force
were measured by an AET 375 AE sensor attatched to the cutting
tool and a Kistler 9257A dynamometer mounted on the tool fixture,
respectively. These signals were sampled by the PC through 12-bit
A/D convertor (DACA board) and saved as an ASCII file before fur-
ther processing. The sampled sensor data were later used for off-line
evaluation of the tool wear detection scheme. In the evaluation the
data were fed to the signal processing program and the resulting AR
coefficients were normalized, since the ART 2 networks are designed
to work with normalized input vectors. However, in identification of
tool wear, the magnitude of the cutting force, spindle motor current
or the RMS AE level are all known as good indicators of tool wear.
Thus, important information may be lost by using normalized input
vector. One way of using this information may be to increase the
number of input features by using the scale variable Zz:f/m along
with the normalized input vector to incorparate the magnitude of the
input vector as proposed by Burke [21]. The resulting normaized in-
put vector was then fed to the adaptive resonance network. For the
neural network simulation a special software was written in C and
run on the Delta Neurocomputer workstation.

An example of the changes in the bottom-up weights, z;; and
the top-down weights, z;;, with time during traizing of the network
is shown in Fig. 2. When a new input vector is presented to the
network, the changes in the bottom-up weights (3, }:J | 2ij {) and
the top-down weights (3°; E,' | zji |) suddenly increase and then
decay as the network goes through encording the new information
from the current input vector.

To test the effectiveness of the ART2 network in classifying
the fresh and worn tool data the network was presented with 8 {resh
tool data sets followed by another 8 worn tool data sets, and the
output category from the network was observed.

Table 1 shows typical output categories from the network
when the vigilance parameter of the orientation subsystem was var-
ied. The network effectively distinguishes the worn tool from the
fresh tool under wide range of vigilance parameter (0.7-0.99). How-
ever, the network becomes too sensitive to small differences in input
vector with the vigilance parameter of 0.995 or higher as evidenced
in Table 1 with classification of the input vectors into more than 2
output categories. On the other hand, with a low vigilance parame-
ter the sensitivity of classification will be decreased. Thus, too high
or low vigilance parameters should be avoided. The effect of change
in the dimension of input vector to the network in the performance
of classification is shown in Fig. 3. According to the figure, there is
an optimum number for the input dimension, and the performance
of the classification gets worse if smaller or larger numbers are used
for input dimension. In our particular case 4-6 was the optimum
number for the input dimension. It seemns that with just 2 AR pa-
rameters too little information on the state of the tool is provided.
On the other hand, the petwork is presented with some irrelevent
information as too many AR coefficient are used as the input vector
to the network resulting in poor performance. In contrast to the
size of input vector, the size of output category has little influence
on the performance of the network as shown in Fig. 3. The net-
work correctly classified the data into 2 groups irrespective of the
size of output category. So, any number larger than 2 can be used
as the dimension of output category. However, too small or large

number should also be avoided, because the changes in characteris-
tics of sensor signal can be caused not only by tool wear but also by
other factors and reservation for those changes should be made with
reasonably large output dimension, and berause too large a number
is undesirable from the view point of computational efficiency.
Performance of the system under various eutting conditions is
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shown in Tables 2 and 3. We expected that the system would perform
better under harsher cutting conditions, because the sensor signals
from fresh and worn tools showed more dissimilarities when operated
under harsher cutting conditions. Actually, the classification proved
to be miore reliable under harsher cutting conditions. When the
depth of cut or feed rate is small the network easily misclassifys
the sensor data, but as these parameters become larger the network
establishes the 2 classes correctly.

A tool wear detection system should be sufficiently insensitive
to the changes in cutting parameters or other environmental factors,
while maintaining a high sensitivity only to tool wear. In the next set
of experiments, the network was presented with 8 input vectors from
fresh tool followed by another 8 input vectors also from fresh tool but
for a different catting condition from the first 8 in order to test the
sensitivity of the network to changes in cutting conditions. Typical
results are shown in Tables 4 and 5. In Table 4, the output category
from the network when operated with various vigilance parameters
is recorded. Unfortunately, the network is more or less sensitive to
changes in cutting condition {depth of cut). The sensitivity is slightly
higher with higher vigilance parameter. Table 6 (a) and (b) show
the output category when the depth of cut changes from 0.02 in. to
0.04 in. and from 0.01 in. to 0.04 in., respectively. For the larger
change in cutting condition (depth of cut) the network is appareutly
more sensitive.

4 Conclusions

Ttlie feasibility of using unsupervised learning capability for tool wear
detection in turning operations was investigated in this study. The
following are the conclusions drawn:

1. By applying the AR series model and the artificial neural net-
work structure with unsupervised learning capability (ART2)
for learning characteristics of the signals from multiple sen-
sors depending on the state of cutting tool, tool wear can be

detected.

. 'Ihe ART?2 is better suited for tool condition monitoring pur-
poses than more popular nmulti-layerd perceptrons trained with
the back propagation in the sense that it has the self-organizing
capability which makes time-consuming off-line training un-
neccesary, and that it can accomodate gradual changes in the
characteristics of the machine and environmental conditions.

. The various parameters of the neural network have significant
effect on the performance and efficiency of the tool wear detec-
tion system. So, the parameters should be carefully chosen.

. The tool wear detection scheme showed some sensitivity to
changes in cutting conditions as well as changes in cutting tool
states. PFurthermore, the scheme showed beiter classification
performance under harsher cutting conditions, and the rate of
misclassification became high under light cutting conditions.
So, the tool wear detection scheme is better suited for harsh
cutting operations which do not involve changes in cutting con-
ditions in the middle of the run.

. The ART2 seems more suitable for classification of seasor sig-
nals which have sudden drastic changes in the characteristics
of the signal rather than gradual changes, because the adaptive
resonance network can accomodate gradual changes due to its
adaptation capability. So, one possible extension of this study
may be detection of toal breakage in metal cutting operations.
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Table 1 A typical output category from the ART2 network
with various vigilance level when the network was pre-
sented with 8 fresh tool data followed by 8 worn tool data.
Cutting conditions: cutting speed, 350 fpm; depth of cut,
0.04 in_; feed rate, 0.007 ipr.
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Table 2 A typical output category from the ART2 network
with various vigilance level when the network was pre-
sented with 8 fresh tool data followed by 8 worn tool data
under various depth of cut. Vigilance, 0.95. Cutting con-
ditions: cutting speed, 350 fpm,; feed rate, 0.007 ipr.



time | state || f=.0lin/r | f=.007in/r | f=.004in/r

1 1 3 5
2 1 3 5
3 1 3 5
4 fresh 1 3 5
5 1 3 5
6 1 3 5
7 1 3 5
8 1 3 5
9 5 3 2
10 5 3 2
11 5 4 2
12 | worn 5 4 2
13 5 4 5
14 5 4 5
15 5 3 2
16 5 3 5

Table 3 A typical output category from the ART2 network
with various vigilance level when the network was pre-
sented with 8 fresh tool data followed by 8 worn tool data
under various feed rate. Vigilance, 0.95. Cutting condi-
tions: cutting speed, 350 fpm; depth of cut, 0.04 in.
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Table 4 A typical output category from the ART2 network
with various vigilance level when the depth of cut changes
suddenly from 0.01 in. to 0.04 in. Vigilance, 0.95. Cut-
ting conditions: cutting speed, 350 fpm; feed rate, 0.007
ipr.
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Table 5 A typical output category from the ART2 network
when the depth of cut changes suddenly from 0.02 in. tp
0.04 in. and from 0.01 in. to 0.04 in. Vigilance, 0.95.
Cutting conditions: cutting speed, 350 fpm; feed rate,
0.007 ipr.



